approxMaxMin {profExtrema} | R Documentation |
Approximate coordinate profile functions
Description
Evaluate profile extrema over other variables with approximations at few values
Usage
approxMaxMin(f, fprime = NULL, d, opts = NULL)
Arguments
f |
the function to be evaluated |
fprime |
derivative of the function |
d |
dimension of the input domain |
opts |
a list containing the options for this function and the subfunctions getMax, getMin or getMaxMinMC, see documentation of getMax, getMin, getMaxMinMC for details. The options only for approxMaxMin are
|
Value
a list of two data frames (min, max) of the evaluations of f_sup(x_i) = sup_{x_j \neq i} f(x_1,\dots,x_d)
and f_inf(x_i) = inf_{x_j \neq i} f(x_1,\dots,x_d)
for each i at the design Design. By default Design is a 100 equally spaced points for each dimension. It can be changed by defining it in options$Design
Author(s)
Dario Azzimonti
Examples
if (!requireNamespace("DiceKriging", quietly = TRUE)) {
stop("DiceKriging needed for this example to work. Please install it.",
call. = FALSE)
}
# Compute the coordinate profile extrema with full optimization on 2d example
# Define the function
g=function(x){
return(-branin(x))
}
# Define the gradient
gprime = function(x){
x1 = x[1]*15-5
x2 = x[2]*15
f1prime = (15*25)/(4*pi^4)*x1^3 - (15*75)/(2*pi^3)*x1^2 +
(80*15)/(pi^2)*x1 - (5*15)/(pi^2)*x2*x1 +
10*15/pi*x2 - 60*15/pi-10*15* (1 - 1/(8*pi))*sin(x1)
f2prime = 2*15*(x2-5/(4*pi^2)*x1^2 +5/pi*x1-6)
return(matrix(c(-f1prime,-f2prime),nrow=1))
}
# generic approximation options
init_des<-lhs::maximinLHS(15,2)
options_approx<- list(multistart=4,heavyReturn=TRUE,initDesign=init_des,fullDesignSize=100)
# 1order approximation
options_approx$smoother<-"1order"
coordProf_approx_1order<-approxMaxMin(f = g,fprime = gprime,d=2,opts = options_approx)
# quantile regression
options_approx$smoother<-"quantSpline"
coordProf_approx_quantReg<-approxMaxMin(f = g,fprime = gprime,d=2,opts = options_approx)
# Consider threshold=-10
threshold<- -10
# obtain the points where the profiles take the threshold value
pp_change<-getChangePoints(threshold = threshold,allRes = coordProf_approx_quantReg)
# evaluate g at a grid and plot the image
x<-seq(0,1,,100)
grid<-expand.grid(x,x)
g_evals<- apply(X = grid,MARGIN = 1,FUN = g)
image(x = x,y = x,z = matrix(g_evals,nrow = 100),col = grey.colors(20))
contour(x=x,y=x,z=matrix(g_evals,nrow = 100), add=TRUE, nlevels = 20)
contour(x=x,y=x,z=matrix(g_evals,nrow = 100), add=TRUE, levels = threshold,col=2)
abline(h = pp_change$neverEx$`-10`[[2]],col="darkgreen",lwd=2)
abline(v = pp_change$neverEx$`-10`[[1]],col="darkgreen",lwd=2)
# Plot the coordinate profiles and a threshold
plotMaxMin(allRes = coordProf_approx_1order,threshold = threshold,changes = TRUE)
plotMaxMin(allRes = coordProf_approx_quantReg,threshold = threshold,changes = TRUE)