| prev-class {prevalence} | R Documentation | 
Class "prev"
Description
The "prev" class represents output from Bayesian true prevalence
estimation models.
Objects from the Class
Objects of class "prev" are created by truePrev, truePrevMulti, truePrevMulti2 and truePrevPools.
Slots
Objects of class "prev" contain the following four slots:
par:- 
A list of input parameters
 model:- 
The fitted Bayesian model, in BUGS language (S3 class
"prevModel") mcmc:- 
A list, with one element per chain, of the simulated true prevalences, sensitivities and specificities
 diagnostics:- 
A list with elements for the Deviance Information Criterion (
$DIC), the Brooks-Gelman-Rubin statistic ($BGR), and in the case oftruePrevMultiandtruePrevMulti2, the Bayes-P statistic ($bayesP) 
Author(s)
Brecht Devleesschauwer <brechtdv@gmail.com>
See Also
truePrev, truePrevMulti, truePrevMulti2, truePrevPools
show-methods, print-methods, summary-methods, convert-methods, plot-methods, plot-methods-coda
Examples
## Taenia solium cysticercosis in Nepal
SE <- list(dist = "uniform", min = 0.60, max = 1.00)
SP <- list(dist = "uniform", min = 0.75, max = 1.00)
TP <- truePrev(x = 142, n = 742, SE = SE, SP = SP)
## Summarize estimates per chain
summary(TP)
## Diagnostic plots
par(mfrow = c(2, 2))
plot(TP)
## Generic plots from package coda
par(mfrow = c(1, 1))
densplot(TP)
traceplot(TP)
gelman.plot(TP)
autocorr.plot(TP)
## Use 'slotNames()' to see the slots of object TP
slotNames(TP)
## Every slot can be accessed using the '@' operator
## Use 'str()' to see the structure of each object
str(TP@par)          # input parameters
str(TP@model)        # fitted model
str(TP@mcmc)         # simulated TP, SE, SP
str(TP@diagnostics)  # DIC and BGR (and bayesP)
## Each element of TP@mcmc inherits from coda class 'mcmc.list'
## List all available methods for this class
methods(class = "mcmc.list")
## List all available functions in the coda package
library(help = "coda")
## Highest Posterior Density interval, from coda package
coda::HPDinterval(TP@mcmc$TP)