preseqR.rSAC.bootstrap {preseqR} | R Documentation |
Best practice for r
-SAC
Description
preseqR.rSAC.bootstrap
predicts the expected number of species
represented at least r
times in a random sample based on the initial sample.
Usage
preseqR.rSAC.bootstrap(n, r=1, mt=20, size=SIZE.INIT, mu=MU.INIT, times=30,
conf=0.95)
Arguments
n |
A two-column matrix.
The first column is the frequency |
r |
A positive integer. Default is 1. |
mt |
An positive integer constraining possible rational function approximations. Default is 20. |
times |
The number of bootstrap samples. |
size |
A positive double, the initial value of the parameter |
mu |
A positive double, the initial value of the parameter |
conf |
The confidence level. Default is 0.95 |
Details
This is the bootstrap version of preseqR.rSAC
. The bootstrap
sample is generated by randomly sampling the initial sample with replacement.
For each bootstrap sample, we construct an estimator. The median of
estimates is used as the prediction for the number of species
represented at least r
times in a random sample.
The confidence interval is constructed based on a lognormal distribution.
Value
f |
The estimator for the |
se |
The standard error for the estimator. The input is a vector of sampling efforts t. |
lb |
The lower bound of the confidence interval.The input is a vector of sampling efforts t. |
ub |
The upper bound of the confidence interval.The input is a vector of sampling efforts t. |
Author(s)
Chao Deng
References
Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.
Deng, C., Daley, T., Calabrese, P., Ren, J., & Smith, A.D. (2016). Estimating the number of species to attain sufficient representation in a random sample. arXiv preprint arXiv:1607.02804v3.
Examples
## load library
# library(preseqR)
## import data
# data(FisherButterfly)
## construct estimator for SAC
# estimator1 <- preseqR.rSAC.bootstrap(FisherButterfly, r=1)
## The number of species represented at least once in a sample,
## when the sample size is 10 or 20 times of the initial sample
# estimator1$f(c(10, 20))
## The standard error of the estiamtes
# estimator1$se(c(10, 20))
## The confidence interval of the estimates
# lb <- estimator1$lb(c(10, 20))
# ub <- estimator1$ub(c(10, 20))
# matrix(c(lb, ub), byrow=FALSE, ncol=2)
## construct estimator for r-SAC
# estimator2 <- preseqR.rSAC.bootstrap(FisherButterfly, r=2)
## The number of species represented at least twice in a sample,
## when the sample size is 50 or 100 times of the initial sample
# estimator2$f(c(50, 100))
## The standard error of the estiamtes
# estimator2$se(c(50, 100))
## The confidence interval of the estimates
# lb <- estimator2$lb(c(50, 100))
# ub <- estimator2$ub(c(50, 100))
# matrix(c(lb, ub), byrow=FALSE, ncol=2)