summary.predictNMBsim {predictNMB} | R Documentation |
Create table summaries of predictNMBsim
objects.
Description
Create table summaries of predictNMBsim
objects.
Usage
## S3 method for class 'predictNMBsim'
summary(
object,
what = c("nmb", "inb", "cutpoints"),
inb_ref_col = NULL,
agg_functions = list(median = function(x) {
round(stats::median(x), digits = 2)
}, `95% CI` = function(x) {
paste0(round(stats::quantile(x, probs = c(0.025,
0.975)), digits = 1), collapse = " to ")
}),
rename_vector,
...
)
Arguments
object |
A |
what |
What to summarise: one of "nmb", "inb" or "cutpoints". Defaults to "nmb". |
inb_ref_col |
Which cutpoint method to use as the reference strategy
when calculating the incremental net monetary benefit. See |
agg_functions |
A named list of functions to use to aggregate the selected values. Defaults to the median and 95% interval. |
rename_vector |
A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output. |
... |
Additional, ignored arguments. |
Details
Table summaries will be based on the what
argument.
Using "nmb" returns the simulated values for NMB, with no reference group;
"inb" returns the difference between simulated values for NMB and a set
strategy defined by inb_ref_col
; "cutpoints" returns the cutpoints
selected (0, 1).
Value
Returns a tibble
.
Examples
# perform simulation with do_nmb_sim()
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_obj <- do_nmb_sim(
sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb,
cutpoint_methods = c("all", "none", "youden", "value_optimising")
)
summary(
sim_obj,
rename_vector = c(
"Value_Optimising" = "value_optimising",
"Treat_None" = "none",
"Treat_All" = "all",
"Youden_Index" = "youden"
)
)