Evaluate Clinical Prediction Models by Net Monetary Benefit


[Up] [Top]

Documentation for package ‘predictNMB’ version 0.2.1

Help Pages

autoplot.predictNMBscreen Create plots of from screened predictNMB simulations.
autoplot.predictNMBsim Create plots of from predictNMB simulations.
ce_plot Create a cost-effectiveness plot.
ce_plot.predictNMBsim Create a cost-effectiveness plot.
do_nmb_sim Do the predictNMB simulation, evaluating the net monetary benefit (NMB) of the simulated model.
evaluate_cutpoint_cost Evaluates a cutpoint by returning the mean treatment cost per sample.
evaluate_cutpoint_nmb Evaluates a cutpoint by returning the mean NMB per sample.
evaluate_cutpoint_qalys Evaluates a cutpoint by returning the mean QALYs lost per sample.
get_inbuilt_cutpoint Get a cutpoint using the methods inbuilt to predictNMB
get_inbuilt_cutpoint_methods Get a vector of all the inbuilt cutpoint methods
get_nmb_sampler Make a NMB sampler for use in 'do_nmb_sim()' or 'screen_simulation_inputs()'
get_sample Samples data for a prediction model with a specified AUC and prevalence.
get_thresholds Gets probability thresholds given predicted probabilities, outcomes and NMB.
print.predictNMBscreen Print a summary of a predictNMBscreen object
print.predictNMBsim Print a summary of a predictNMBsim object
screen_simulation_inputs Screen many simulation inputs: a parent function to 'do_nmb_sim()'
summary.predictNMBscreen Create table summaries of 'predictNMBscreen' objects.
summary.predictNMBsim Create table summaries of 'predictNMBsim' objects.
theme_sim Returns a 'ggplot2' theme that reduces clutter in an 'autoplot()' of a 'predictNMBsim' object.