poso_estim_sir {posologyr} | R Documentation |
Estimate the posterior distribution of individual parameters by SIR
Description
Estimates the posterior distribution of individual parameters by Sequential Importance Resampling (SIR)
Usage
poso_estim_sir(
dat = NULL,
prior_model = NULL,
n_sample = 10000,
n_resample = 1000,
return_model = TRUE,
nocb = FALSE
)
Arguments
dat |
Dataframe. An individual subject dataset following the structure of NONMEM/rxode2 event records. |
prior_model |
A |
n_sample |
Number of samples from the S-step |
n_resample |
Number of samples from the R-step |
return_model |
A boolean. Returns a rxode2 model using the estimated
ETAs if set to |
nocb |
A boolean. for time-varying covariates: the next observation
carried backward (nocb) interpolation style, similar to NONMEM. If
|
Value
If return_model
is set to FALSE
, a list of one element: a
dataframe $eta
of ETAs from the posterior distribution, estimated by
Sequential Importance Resampling.
If return_model
is set to TRUE
, a list of the dataframe of the posterior
distribution of ETA, and a rxode2 model using the estimated distributions of
ETAs.
Examples
# model
mod_run001 <- list(
ppk_model = rxode2::rxode({
centr(0) = 0;
depot(0) = 0;
TVCl = THETA_Cl;
TVVc = THETA_Vc;
TVKa = THETA_Ka;
Cl = TVCl*exp(ETA_Cl);
Vc = TVVc*exp(ETA_Vc);
Ka = TVKa*exp(ETA_Ka);
K20 = Cl/Vc;
Cc = centr/Vc;
d/dt(depot) = -Ka*depot;
d/dt(centr) = Ka*depot - K20*centr;
d/dt(AUC) = Cc;
}),
error_model = function(f,sigma) {
dv <- cbind(f,1)
g <- diag(dv%*%sigma%*%t(dv))
return(sqrt(g))
},
theta = c(THETA_Cl=4.0, THETA_Vc=70.0, THETA_Ka=1.0),
omega = lotri::lotri({ETA_Cl + ETA_Vc + ETA_Ka ~
c(0.2,
0, 0.2,
0, 0, 0.2)}),
sigma = lotri::lotri({prop + add ~ c(0.05,0.0,0.00)}))
# df_patient01: event table for Patient01, following a 30 minutes intravenous
# infusion
df_patient01 <- data.frame(ID=1,
TIME=c(0.0,1.0,14.0),
DV=c(NA,25.0,5.5),
AMT=c(2000,0,0),
EVID=c(1,0,0),
DUR=c(0.5,NA,NA))
# estimate the posterior distribution of population parameters
poso_estim_sir(dat=df_patient01,prior_model=mod_run001,
n_sample=1e3,n_resample=1e2)