Approximate Bayesian Computation with Pooled Sequencing Data


[Up] [Top]

Documentation for package ‘poolABC’ version 1.0.0

Help Pages

ABC Parameter estimation with Approximate Bayesian Computation with several targets
cleanData Import and clean a single file containing data in 'popoolation2' format
cmd2pops Create SCRM command line for a model with two populations
cmdParallel Create SCRM command line for a parallel origin scenario
cmdSingle Create SCRM command line for a single origin scenario
createHeader Create a header for a _rc file of popoolation2
createParams Draw parameters from the priors
error_modelSel Compute error in model selection with Approximate Bayesian Computation
forceLocus Force the simulations to contain the required number of loci
getmode Calculate the mode of a distribution
importContigs Import multiple files containing data in PoPoolation2 format
index.rejABC Parameter estimation with Approximate Bayesian Computation using rejection sampling and recording just the index of accepted simulations
limits Matrix of prior limits
mergepost Merge posterior distributions
modelSelect Perform model selection with Approximate Bayesian Computation
mode_locfit Compute mode of a locfit object
multipleABC Parameter estimation with Approximate Bayesian Computation for multiple targets
myparams Matrix of simulated parameter values
params Matrix of simulated parameter values
plot_errorABC Prediction error plots for ABC using a list
plot_msel Plot model misclassification
plot_param Plot the density estimation of a given parameter
plot_Posteriors Plot multiple posterior distributions
plot_stats Plot the fit of a summary statistic to the target
plot_weighted Plot the density estimation of a given parameter
poolSim Simulation of Pooled DNA sequencing
poolStats Compute summary statistics from Pooled DNA sequencing
poststat Calculate point estimates from the posterior distribution
prepareData Organize information by contig - for multiple data files
prepareFile Organize information by contigs - for a single data file
priorsMatrix Construct matrix of prior limits
rc1 Data frame with an example of observed data
rc2 Data frame with an example of observed data
regABC Parameter estimation with Approximate Bayesian Computation using local linear regression
rejABC Parameter estimation with Approximate Bayesian Computation using rejection sampling
remove_quantileReads Remove sites using quantiles of the depth of coverage
remove_realReads Remove sites, according to their coverage, from real data
runSCRM Run scrm and obtain genotypes
scaled.migration Compute scaled migration rates
scaledPrior Compute scaled migration rate limits
simulationABC Perform an Approximate Bayesian Computation simulation study
sim_modelSel Leave-one-out cross validation of model selection
singleABC Parameter estimation with Approximate Bayesian Computation for a single target
summary_modelSelect Posterior model probabilities
sumstats Matrix of summary statistics computed from simulated data