MDP2POMDP {pomdp}R Documentation

Convert between MDPs and POMDPs

Description

Convert a MDP into POMDP by adding an observation model or a POMDP into a MDP by making the states observable.

Usage

make_partially_observable(x, observations = NULL, observation_prob = NULL)

make_fully_observable(x)

Arguments

x

a MDP object.

observations

a character vector specifying the names of the available observations.

observation_prob

Specifies the observation probabilities (see POMDP for details).

Details

make_partially_observable() adds an observation model to an MDP. If no observations and observation probabilities are provided, then an observation for each state is created with identity observation matrices. This means we have a fully observable model encoded as a POMDP.

make_fully_observable() removes the observation model from a POMDP and returns an MDP.

Value

a MDP or a POMDP object.

Author(s)

Michael Hahsler

See Also

Other MDP: MDP(), MDP_policy_functions, accessors, actions(), add_policy(), gridworld, reachable_and_absorbing, regret(), simulate_MDP(), solve_MDP(), transition_graph(), value_function()

Other POMDP: POMDP(), accessors, actions(), add_policy(), plot_belief_space(), projection(), reachable_and_absorbing, regret(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(), transition_graph(), update_belief(), value_function(), write_POMDP()

Examples

# Turn the Maze MDP into a partially observable problem.
# Here each state has an observation, so it is still a fully observable problem
# encoded as a POMDP.
data("Maze")
Maze

Maze_POMDP <- make_partially_observable(Maze)
Maze_POMDP

sol <- solve_POMDP(Maze_POMDP)
policy(sol)
simulate_POMDP(sol, n = 1, horizon = 100, return_trajectories = TRUE)$trajectories

# Make the Tiger POMDP fully observable
data("Tiger")
Tiger

Tiger_MDP <- make_fully_observable(Tiger)
Tiger_MDP

sol <- solve_MDP(Tiger_MDP)
policy(sol)
# The result is not exciting since we can observe where the tiger is!

[Package pomdp version 1.2.3 Index]