Factorization of Sparse Counts Matrices Through Poisson Likelihood


[Up] [Top]

Documentation for package ‘poismf’ version 0.4.0-4

Help Pages

factors Determine latent factors for new rows/users
factors.single Get latent factors for a new user given her item counts
get.factor.matrices Extract Latent Factor Matrices
get.model.mappings Extract user/row and item/column mappings from Poisson model.
poismf Factorization of Sparse Counts Matrices through Poisson Likelihood
poismf_unsafe Poisson factorization with no input casting
predict.poismf Predict expected count for new row(user) and column(item) combinations
print.poismf Get information about poismf object
summary.poismf Get information about poismf object
topN Rank top-N highest-predicted items for an existing user
topN.new Rank top-N highest-predicted items for a new user