trelli_abundance_boxplot {pmartR} | R Documentation |
Boxplot trelliscope building function for abundance data
Description
Specify a boxplot design and cognostics for the abundance boxplot trelliscope. Each boxplot will have its own groups as specified by the first main effect in group_designation. Use "trelli_rnaseq_boxplot" for RNA-Seq data.
Usage
trelli_abundance_boxplot(
trelliData,
cognostics = c("count", "mean abundance"),
ggplot_params = NULL,
interactive = FALSE,
include_points = TRUE,
path = .getDownloadsFolder(),
name = "Trelliscope",
test_mode = FALSE,
test_example = 1,
single_plot = FALSE,
...
)
Arguments
trelliData |
A trelliscope data object made by as.trelliData or as.trelliData.edata, and grouped by trelli_panel_by. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "count", "mean abundance", "median abundance", and "cv abundance". If data are paneled by a biomolecule, the count will be "sample count". If data are paneled by a sample or a biomolecule class, the count will be "biomolecule count". If statRes data is included, "anova p-value" and "fold change" data per comparisons may be added. If grouping information is included, only "sample count" and "mean abundance" will be calculated, along with "anova p-value" and "fold change" if specified. "anova p-value" will not be included if paneling a trelliscope display by a biomolecule class. Default is "sample count" and "mean abundance". |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "ylim(c(2,20))"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
include_points |
Add points as a geom_jitter. Default is TRUE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
Value
No return value, builds a trelliscope display of boxplots that is stored in 'path'
Author(s)
David Degnan, Lisa Bramer
Examples
if (interactive()) {
library(pmartRdata)
trelliData1 <- as.trelliData.edata(e_data = pep_edata,
edata_cname = "Peptide",
omics_type = "pepData")
# Transform the data
omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2")
# Group the data by condition
omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype"))
# Apply the IMD ANOVA filter
imdanova_Filt <- imdanova_filter(omicsData = omicsData)
omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData,
min_nonmiss_anova = 2)
# Normalize my pepData
omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median",
"apply_norm" = TRUE, "backtransform" = TRUE)
# Implement the IMD ANOVA method and compute all pairwise comparisons
# (i.e. leave the `comparisons` argument NULL)
statRes <- imd_anova(omicsData = omicsData, test_method = 'combined')
# Generate the trelliData object
trelliData2 <- as.trelliData(omicsData = omicsData)
trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes)
# Build the abundance boxplot with an edata file where each panel is a biomolecule.
trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>%
trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir())
# Build the abundance boxplot wher each panel is a sample.
# Include all applicable cognostics. Remove points.
trelli_panel_by(trelliData = trelliData1, panel = "Sample") %>%
trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10,
include_points = FALSE,
cognostics = c("count",
"mean abundance",
"median abundance",
"cv abundance"),
path = tempdir()
)
# Build the abundance boxplot with an omicsData object.
# Let the panels be biomolecules. Here, grouping information is included.
trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>%
trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir())
# Build the abundance boxplot with an omicsData object. The panel is a biomolecule class,
# which is proteins in this case.
trelli_panel_by(trelliData = trelliData2, panel = "RazorProtein") %>%
trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir())
# Build the abundance boxplot with an omicsData and statRes object.
# Panel by a biomolecule, and add statistics data to the cognostics
trelli_panel_by(trelliData = trelliData4, panel = "Peptide") %>%
trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir(),
cognostics = c("mean abundance", "anova p-value", "fold change"))
# Other options include modifying the ggplot
trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>%
trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir(),
ggplot_params = c("ylab('')", "ylim(c(20,30))"))
# Or making the plot interactive
trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>%
trelli_abundance_boxplot(
interactive = TRUE, test_mode = TRUE, test_example = 1:10, path = tempdir())
}