protein_quant {pmartR} | R Documentation |
Protein Quantification
Description
This function takes in a pepData object, method (quantification method, mean, median or rrollup), and the optional argument isoformRes (defaults to NULL). An object of the class 'proData' is returned.
Usage
protein_quant(
pepData,
method,
isoformRes = NULL,
qrollup_thresh = NULL,
single_pep = FALSE,
single_observation = FALSE,
combine_fn = "median",
parallel = TRUE,
emeta_cols = NULL,
emeta_cols_sep = ";"
)
Arguments
pepData |
an omicsData object of the class 'pepData' |
method |
character string specifying one of four protein quantification methods, 'rollup', 'rrollup', 'qrollup' and 'zrollup' |
isoformRes |
list of data frames, the result of applying the 'bpquant' function to original pepData object. Defaults to NULL. |
qrollup_thresh |
numeric value; is the peptide abundance cutoff value. Is an argument to qrollup function. |
single_pep |
logical indicating whether or not to remove proteins that have just a single peptide mapping to them, defaults to FALSE. |
single_observation |
logical indicating whether or not to remove peptides that have just a single observation, defaults to FALSE. |
combine_fn |
character string specifying either be 'mean' or 'median' |
parallel |
logical indicating whether or not to use "doParallel" loop in applying rollup functions. Defaults to TRUE. Is an argument of rrollup, qrollup and zrollup functions. |
emeta_cols |
character vector indicating additional columns of e_meta that should be kept after rolling up to the protein level. The default, NULL, only keeps the column containing the mapping variable along with the new columns created (peps_per_pro and n_peps_used). |
emeta_cols_sep |
character specifying the string that will separate the elements for emeta_cols when they are collapsed into a single row when aggregating rows belonging to the same protein. Defaults to ";" |
Details
If isoformRes is provided then, a temporary pepData object is formed using the isoformRes information as the e_meta component and the original pepData object will be used for e_data and f_data components. The emeta_cname for the temporary pepData object will be the 'protein_isoform' column of isoformRes. Then one of the three 'method' functions can be applied to the temporary pepData object to return a proData object. If isofromRes is left NULL, then depending on the input for 'method', the correct 'method' function is applied directly to the input pepData object and a proData object is returned.
Value
omicsData object of the class 'proData'
References
Webb-Robertson, B.-J. M., Matzke, M. M., Datta, S., Payne, S. H., Kang, J., Bramer, L. M., ... Waters, K. M. (2014). Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements. Molecular & Cellular Proteomics.: MCP, 13(12), 3639-3646.
Examples
library(pmartRdata)
mypepData <- group_designation(omicsData = pep_object, main_effects = c("Phenotype"))
mypepData = edata_transform(omicsData = mypepData, "log2")
imdanova_Filt <- imdanova_filter(omicsData = mypepData)
mypepData <- applyFilt(filter_object = imdanova_Filt, omicsData = mypepData, min_nonmiss_anova = 2)
imd_anova_res <- imd_anova(omicsData = mypepData, test_method = 'comb',
pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon')
isoformRes = bpquant(statRes = imd_anova_res, pepData = mypepData)
# case where isoformRes is NULL:
results <- protein_quant(pepData = mypepData, method = 'rollup',
combine_fn = 'median', isoformRes = NULL)
# case where isoformRes is provided:
# results2 = protein_quant(pepData = mypepData, method = 'rollup',
# combine_fn = 'mean', isoformRes = isoformRes)