normalize_zero_one_scaling {pmartR} | R Documentation |
Scale from zero to one
Description
Perform scaling of data from zero to one.
Usage
normalize_zero_one_scaling(omicsData)
Arguments
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', created by |
Details
The sample-wise minimum of the features is subtracted from each feature in e_data, then divided by the difference between the sample-wise minimum and maximum of the features to get the normalized data. The location estimates are not applicable for this data and the function returns a NULL list element as a placeholder. The scale estimates are the sample-wise feature ranges. All NA values are replaced with zero.
Value
Normalized omicsData object of class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', created by as.pepData
,
as.proData
, as.metabData
,
as.lipidData
, as.nmrData
, respectively.
Author(s)
Rachel Richardson
Examples
library(pmartRdata)
mymetab <- edata_transform(
omicsData = metab_object,
data_scale = "log2"
)
mymetab <- group_designation(
omicsData = mymetab,
main_effects = "Phenotype"
)
norm_data <- normalize_zero_one_scaling(
omicsData = mymetab
)