dispersion_est {pmartR} | R Documentation |
Diagnostic plot for seqData
Description
For generating statistics for 'seqData' objects
Usage
dispersion_est(
omicsData,
method,
interactive = FALSE,
x_lab = NULL,
x_lab_size = 11,
x_lab_angle = NULL,
y_lab = NULL,
y_lab_size = 11,
title_lab = NULL,
title_lab_size = 14,
legend_lab = NULL,
legend_position = "right",
bw_theme = TRUE,
palette = NULL,
point_size = 0.2,
custom_theme = NULL
)
Arguments
omicsData |
seqData object used to terst dispersions |
method |
either "DESeq2", "edgeR", or "voom" for testing dispersion |
interactive |
Logical. If TRUE produces an interactive plot. |
x_lab |
A character string specifying the x-axis label when the metric argument is NULL. The default is NULL in which case the x-axis label will be "count". |
x_lab_size |
An integer value indicating the font size for the x-axis. The default is 11. |
x_lab_angle |
An integer value indicating the angle of x-axis labels. |
y_lab |
A character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
y_lab_size |
An integer value indicating the font size for the y-axis. The default is 11. |
title_lab |
A character string specifying the plot title when the
|
title_lab_size |
An integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
A character string specifying the legend title. |
legend_position |
A character string specifying the position of the legend. Can be one of "right", "left", "top", or "bottom". The default is "right". |
bw_theme |
Logical. If TRUE uses the ggplot2 black and white theme. |
palette |
A character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
point_size |
An integer specifying the size of the points. The default is 0.2. |
custom_theme |
a ggplot 'theme' object to be applied to non-interactive plots, or those converted by plotly::ggplotly(). |
Details
DESeq2 option requires package "survival" to be available.
Value
plot result
References
Robinson MD, McCarthy DJ, Smyth GK (2010). “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616.
Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.
Examples
library(pmartRdata)
myseqData <- group_designation(omicsData = rnaseq_object, main_effects = "Virus")
dispersion_est(omicsData = myseqData, method = "edgeR")
dispersion_est(omicsData = myseqData, method = "DESeq2")
dispersion_est(omicsData = myseqData, method = "voom")