simul_data_UniYX_binom {plsRglm} | R Documentation |
Data generating function for univariate binomial plsR models
Description
This function generates a single univariate binomial response value Y
and a vector of explanatory variables (X_1,\ldots,X_{totdim})
drawn
from a model with a given number of latent components.
Usage
simul_data_UniYX_binom(totdim, ncomp, link = "logit", offset = 0)
Arguments
totdim |
Number of columns of the X vector (from |
ncomp |
Number of latent components in the model (from 2 to 6) |
link |
Character specification of the link function in the mean model
(mu). Currently, " |
offset |
Offset on the linear scale |
Details
This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a modification of a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.
Value
vector |
|
Author(s)
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
T. Naes, H. Martens, Comparison of prediction methods for
multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576.
Morris, Elaine B. Martin, Model selection for partial least squares
regression, Chemometrics and Intelligent Laboratory Systems 64 (2002),
79-89, doi:10.1016/S0169-7439(02)00051-5.
See Also
Examples
layout(matrix(1:6,nrow=2))
# logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4)))[,1])
# probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit")))[,1])
# cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog")))[,1])
# cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit")))[,1])
# loglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="loglog")))[,1])
# log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log")))[,1])
layout(1)
layout(matrix(1:6,nrow=2))
# logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,offset=5)))[,1])
# probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit",offset=5)))[,1])
# cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog",offset=5)))[,1])
# cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit",offset=5)))[,1])
# loglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="loglog",offset=5)))[,1])
# log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log",offset=5)))[,1])
layout(1)
layout(matrix(1:6,nrow=2))
# logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,offset=-5)))[,1])
# probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit",offset=-5)))[,1])
# cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog",offset=-5)))[,1])
# cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit",offset=-5)))[,1])
# loglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="loglog",offset=-5)))[,1])
# log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log",offset=-5)))[,1])
layout(1)