plsR.dof {plsRglm} | R Documentation |
Computation of the Degrees of Freedom
Description
This function computes the Degrees of Freedom using the Krylov representation of PLS and other quantities that are used to get information criteria values. For the time present, it only works with complete datasets.
Usage
## S3 method for class 'dof'
plsR(modplsR, naive = FALSE)
Arguments
modplsR |
A plsR model i.e. an object returned by one of the functions
|
naive |
A boolean. |
Details
If naive=FALSE
returns values for estimated degrees of freedom and
error dispersion. If naive=TRUE
returns returns values for naive
degrees of freedom and error dispersion. The original code from Nicole
Kraemer and Mikio L. Braun was unable to handle models with only one
component.
Value
DoF |
Degrees of Freedom |
sigmahat |
Estimates of dispersion |
Yhat |
Predicted values |
yhat |
Square Euclidean norms of the predicted values |
RSS |
Residual Sums of Squares |
Author(s)
Nicole Kraemer, Mikio L. Braun with improvements from
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of
Partial Least Squares Regression. Journal of the American Statistical
Association, 106(494), 697-705.
N. Kraemer, M. Sugiyama, M.L. Braun.
(2009). Lanczos Approximations for the Speedup of Kernel Partial Least
Squares Regression, Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics (AISTATS), 272-279.
See Also
aic.dof
and infcrit.dof
for computing
information criteria directly from a previously fitted plsR model.
Examples
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,4)
plsR.dof(modpls)
plsR.dof(modpls,naive=TRUE)