kfolds2Mclassed {plsRglm} | R Documentation |
Number of missclassified individuals for k-fold cross validated partial least squares regression models.
Description
This function indicates the total number of missclassified individuals for k-fold cross validated partial least squares regression models.
Usage
kfolds2Mclassed(pls_kfolds)
Arguments
pls_kfolds |
a k-fold cross validated partial least squares regression model used on binary data |
Value
list |
Total number of missclassified individuals vs number of components for the first group partition |
list() |
... |
list |
Total number of missclassified individuals vs number of components for the last group partition |
Note
Use cv.plsR
to create k-fold cross validated partial
least squares regression models.
Author(s)
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47
See Also
kfolds2coeff
, kfolds2Press
,
kfolds2Pressind
and kfolds2Mclassedind
to
extract and transforms results from k-fold cross validation.
Examples
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
kfolds2Mclassed(cv.plsR(object=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=1,verbose=FALSE))
kfolds2Mclassed(cv.plsR(object=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=2,verbose=FALSE))
rm(list=c("Xaze_compl","yaze_compl"))