infcrit.dof {plsRglm} | R Documentation |
Information criteria
Description
This function computes information criteria for existing plsR model using Degrees of Freedom estimation.
Usage
infcrit.dof(modplsR, naive = FALSE)
Arguments
modplsR |
A plsR model i.e. an object returned by one of the functions
|
naive |
A boolean. |
Details
If naive=FALSE
returns AIC, BIC and gmdl values for estimated and
naive degrees of freedom. If naive=TRUE
returns NULL
.
Value
matrix |
AIC, BIC and gmdl values or |
Author(s)
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
M. Hansen, B. Yu. (2001). Model Selection and Minimum Descripion
Length Principle, Journal of the American Statistical Association,
96, 746-774.
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of
Partial Least Squares Regression. Journal of the American Statistical
Association, 106(494), 697-705.
N. Kraemer, M. Sugiyama, M.L. Braun.
(2009). Lanczos Approximations for the Speedup of Kernel Partial Least
Squares Regression, Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics (AISTATS), 272-279.
See Also
plsR.dof
for degrees of freedom computation and
infcrit.dof
for computing information criteria directly from a
previously fitted plsR model.
Examples
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,4)
infcrit.dof(modpls)