aic.dof {plsRglm} | R Documentation |
Akaike and Bayesian Information Criteria and Generalized minimum description length
Description
This function computes the Akaike and Bayesian Information Criteria and the Generalized minimum description length.
Usage
aic.dof(RSS, n, DoF, sigmahat)
bic.dof(RSS, n, DoF, sigmahat)
gmdl.dof(sigmahat, n, DoF, yhat)
Arguments
RSS |
vector of residual sum of squares. |
n |
number of observations. |
DoF |
vector of Degrees of Freedom. The length of |
sigmahat |
Estimated model error. The length of |
yhat |
vector of squared norm of Yhat. The length of |
Details
The gmdl criterion is defined as
gmdl=\frac{n}{2}log(S)+\frac{DoF}{2}log(F)+\frac{1}{2}log(n)
with
S=\hat\sigma^2
Value
vector |
numerical values of the requested AIC, BIC or GMDL. |
Author(s)
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
M. Hansen, B. Yu. (2001). Model Selection and Minimum Descripion
Length Principle, Journal of the American Statistical Association,
96, 746-774.
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of
Partial Least Squares Regression. Journal of the American Statistical
Association, 106(494), 697-705.
N. Kraemer, M.L. Braun, Kernelizing PLS,
Degrees of Freedom, and Efficient Model Selection, Proceedings of the
24th International Conference on Machine Learning, Omni Press, (2007)
441-448.
See Also
plsR.dof
for degrees of freedom computation and
infcrit.dof
for computing information criteria directly from a
previously fitted plsR model.
Examples
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,4)
dof.object <- plsR.dof(modpls)
aic.dof(modpls$RSS,modpls$nr,dof.object$DoF,dof.object$sigmahat)
bic.dof(modpls$RSS,modpls$nr,dof.object$DoF,dof.object$sigmahat)
gmdl.dof(dof.object$sigmahat,modpls$nr,dof.object$DoF,dof.object$yhat)
naive.object <- plsR.dof(modpls,naive=TRUE)
aic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)
bic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)
gmdl.dof(naive.object$sigmahat,modpls$nr,naive.object$DoF,naive.object$yhat)