simul_data_UniYX_beta {plsRbeta} | R Documentation |
Data generating function for univariate beta plsR models
Description
This function generates a single univariate rate response value Y
and
a vector of explanatory variables (X_1,\ldots,X_{totdim})
drawn from a
model with a given number of latent components.
Usage
simul_data_UniYX_beta(
totdim,
ncomp,
disp = 1,
link = "logit",
type = "a",
phi0 = 20
)
Arguments
totdim |
Number of columns of the X vector (from |
ncomp |
Number of latent components in the model (from 2 to 6) |
disp |
Tune the shape of the beta distribution (defaults to 1) |
link |
Character specification of the link function in the mean model
(mu). Currently, " |
type |
Simulation scheme |
phi0 |
Simulation scheme "a" parameter |
Details
This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a modification of a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.
Value
vector |
|
Author(s)
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
Frédéric Bertrand, Nicolas Meyer, Michèle Beau-Faller, Karim El Bayed, Izzie-Jacques Namer, Myriam Maumy-Bertrand (2013). Régression Bêta PLS. Journal de la Société Française de Statistique, 154(3):143-159. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/215
T. Naes, H. Martens (1985). Comparison of prediction methods for multicollinear data. Commun. Stat., Simul., 14:545-576. <doi:10.1080/03610918508812458>
Baibing Li, Julian Morris, Elaine B. Martin (2002). Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems, 64:79-89. <doi:110.1016/S0169-7439(02)00051-5>
See Also
Examples
# logit link
layout(matrix(1:4,nrow=2))
hist(t(replicate(100,simul_data_UniYX_beta(4,4)))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=3)))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=5)))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=15)))[,1])
layout(1)
# probit link
layout(matrix(1:4,nrow=2))
hist(t(replicate(100,simul_data_UniYX_beta(4,4,link="probit")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=3,link="probit")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=5,link="probit")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=15,link="probit")))[,1])
layout(1)
# cloglog link
layout(matrix(1:4,nrow=2))
hist(t(replicate(100,simul_data_UniYX_beta(4,4,link="cloglog")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=3,link="cloglog")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=5,link="cloglog")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=15,link="cloglog")))[,1])
layout(1)
# cauchit link
layout(matrix(1:4,nrow=2))
hist(t(replicate(100,simul_data_UniYX_beta(4,4,link="cauchit")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=3,link="cauchit")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=5,link="cauchit")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=15,link="cauchit")))[,1])
layout(1)
# loglog link
layout(matrix(1:4,nrow=2))
hist(t(replicate(100,simul_data_UniYX_beta(4,4,link="loglog")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=3,link="loglog")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=5,link="loglog")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=15,link="loglog")))[,1])
layout(1)
# log link
layout(matrix(1:4,nrow=2))
hist(t(replicate(100,simul_data_UniYX_beta(4,4,link="log")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=3,link="log")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=5,link="log")))[,1])
hist(t(replicate(100,simul_data_UniYX_beta(4,4,disp=15,link="log")))[,1])
layout(1)