PLS_beta {plsRbeta} | R Documentation |
Partial least squares beta regression models
Description
This function implements Partial least squares beta regression models on complete or incomplete datasets.
Usage
PLS_beta(
dataY,
dataX,
nt = 2,
limQ2set = 0.0975,
dataPredictY = dataX,
modele = "pls",
family = NULL,
typeVC = "none",
EstimXNA = FALSE,
scaleX = TRUE,
scaleY = NULL,
pvals.expli = FALSE,
alpha.pvals.expli = 0.05,
MClassed = FALSE,
tol_Xi = 10^(-12),
weights,
method,
sparse = FALSE,
sparseStop = TRUE,
naive = FALSE,
link = NULL,
link.phi = NULL,
type = "ML",
verbose = TRUE
)
Arguments
dataY |
response (training) dataset |
dataX |
predictor(s) (training) dataset |
nt |
number of components to be extracted |
limQ2set |
limit value for the Q2 |
dataPredictY |
predictor(s) (testing) dataset |
modele |
name of the PLS glm or PLS beta model to be fitted
( |
family |
a description of the error distribution and link function to
be used in the model. This can be a character string naming a family
function, a family function or the result of a call to a family function.
(See |
typeVC |
type of leave one out cross validation. For back compatibility purpose.
|
EstimXNA |
only for |
scaleX |
scale the predictor(s) : must be set to TRUE for
|
scaleY |
scale the response : Yes/No. Ignored since not always possible for glm responses. |
pvals.expli |
should individual p-values be reported to tune model selection ? |
alpha.pvals.expli |
level of significance for predictors when pvals.expli=TRUE |
MClassed |
number of missclassified cases, should only be used for binary responses |
tol_Xi |
minimal value for Norm2(Xi) and |
weights |
an optional vector of 'prior weights' to be used in the
fitting process. Should be |
method |
the link function for |
sparse |
should the coefficients of non-significant predictors
(< |
sparseStop |
should component extraction stop when no significant
predictors (< |
naive |
use the naive estimates for the Degrees of Freedom in plsR?
Default is |
link |
character specification of the link function in the mean model
(mu). Currently, " |
link.phi |
character specification of the link function in the
precision model (phi). Currently, " |
type |
character specification of the type of estimator. Currently,
maximum likelihood (" |
verbose |
should info messages be displayed ? |
Details
There are seven different predefined models with predefined link functions available :
- list("\"pls\"")
ordinary pls models
- list("\"pls-glm-Gamma\"")
glm gaussian with inverse link pls models
- list("\"pls-glm-gaussian\"")
glm gaussian with identity link pls models
- list("\"pls-glm-inverse-gamma\"")
glm binomial with square inverse link pls models
- list("\"pls-glm-logistic\"")
glm binomial with logit link pls models
- list("\"pls-glm-poisson\"")
glm poisson with log link pls models
- list("\"pls-glm-polr\"")
glm polr with logit link pls models
Using the "family="
option and setting
"modele=pls-glm-family"
allows changing the family and link function
the same way as for the glm
function. As a consequence
user-specified families can also be used.
- The
accepts the links (as names)
identity
,log
andinverse
.- list("gaussian")
accepts the links (as names)
identity
,log
andinverse
.- family
accepts the links (as names)
identity
,log
andinverse
.- The
accepts the links
logit
,probit
,cauchit
, (corresponding to logistic, normal and Cauchy CDFs respectively)log
andcloglog
(complementary log-log).- list("binomial")
accepts the links
logit
,probit
,cauchit
, (corresponding to logistic, normal and Cauchy CDFs respectively)log
andcloglog
(complementary log-log).- family
accepts the links
logit
,probit
,cauchit
, (corresponding to logistic, normal and Cauchy CDFs respectively)log
andcloglog
(complementary log-log).- The
accepts the links
inverse
,identity
andlog
.- list("Gamma")
accepts the links
inverse
,identity
andlog
.- family
accepts the links
inverse
,identity
andlog
.- The
accepts the links
log
,identity
, andsqrt
.- list("poisson")
accepts the links
log
,identity
, andsqrt
.- family
accepts the links
log
,identity
, andsqrt
.- The
accepts the links
1/mu^2
,inverse
,identity
andlog
.- list("inverse.gaussian")
accepts the links
1/mu^2
,inverse
,identity
andlog
.- family
accepts the links
1/mu^2
,inverse
,identity
andlog
.- The
accepts the links
logit
,probit
,cloglog
,identity
,inverse
,log
,1/mu^2
andsqrt
.- list("quasi")
accepts the links
logit
,probit
,cloglog
,identity
,inverse
,log
,1/mu^2
andsqrt
.- family
accepts the links
logit
,probit
,cloglog
,identity
,inverse
,log
,1/mu^2
andsqrt
.- The function
can be used to create a power link function.
- list("power")
can be used to create a power link function.
The default estimator for Degrees of Freedom is the Kramer and Sugiyama's one which only works for classical plsR models. For these models, Information criteria are computed accordingly to these estimations. Naive Degrees of Freedom and Information Criteria are also provided for comparison purposes. For more details, see Kraemer, N., Sugiyama M. (2010). "The Degrees of Freedom of Partial Least Squares Regression". preprint, http://arxiv.org/abs/1002.4112.
Value
Depends on the model that was used to fit the model.
Note
Use plsRbeta
instead.
Author(s)
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
Frédéric Bertrand, Nicolas Meyer, Michèle Beau-Faller, Karim El Bayed, Izzie-Jacques Namer, Myriam Maumy-Bertrand (2013). Régression Bêta PLS. Journal de la Société Française de Statistique, 154(3):143-159. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/215
See Also
PLS_beta_wvc
and
PLS_beta_kfoldcv
Examples
data("GasolineYield",package="betareg")
yGasolineYield <- GasolineYield$yield
XGasolineYield <- GasolineYield[,2:5]
modpls <- PLS_beta(yGasolineYield,XGasolineYield,nt=3,modele="pls-beta")
modpls$pp
modpls$Coeffs
modpls$Std.Coeffs
modpls$InfCrit
modpls$PredictY[1,]
rm("modpls")