plotSEMM_probability {plotSEMM} | R Documentation |
Probability plot
Description
Requires plotSEMM_setup
be run first. Generates a plot which expresses
the mixing probabilities for each latent class conditioned on the latent predictor.
Usage
plotSEMM_probability(SEMLIdatapks, EtaName = "Eta1", lnty = 3, lncol = 1,
title = "", leg = TRUE, cex = 1.5, ...)
Arguments
SEMLIdatapks |
object returned from |
EtaName |
Label of the latent predictor. If no value is provided, defaults to Eta1. |
lnty |
Determines the line types used for the class lines. If no value is provided,
defaults to 3. See |
lncol |
Determines the line colors used for the class lines. If no value is
provided, defaults to 1. See |
title |
Titles the graph. |
leg |
Logical variable. If TRUE, a legend accompanies the graph. If FALSE, no legend appears. Defaults to TRUE. |
cex |
par(cex) value. Default is 1.5 |
... |
addition inputs, mostly from plotSEMM_GUI() |
Author(s)
Bethany Kok and Phil Chalmers rphilip.chalmers@gmail.com
References
Pek, J. & Chalmers, R. P. (2015). Diagnosing Nonlinearity With Confidence Envelopes for a Semiparametric Approach to Modeling Bivariate Nonlinear Relations Among Latent Variables. Structural Equation Modeling, 22, 288-293. doi: 10.1080/10705511.2014.937790
Pek, J., Chalmers, R. P., Kok B. E., & Losardo, D. (2015). Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations among Latent Variables. Journal of Educational and Behavioral Statistics, 40, 402-423. doi: 10.3102/1076998615589129
See Also
plotSEMM_setup
, plotSEMM_contour
Examples
## Not run:
# 2 class empirical example on positive emotions and heuristic processing in
# Pek, Sterba, Kok & Bauer (2009)
pi <- c(0.602, 0.398)
alpha1 <- c(3.529, 2.317)
alpha2 <- c(0.02, 0.336)
beta21 <- c(0.152, 0.053)
psi11 <- c(0.265, 0.265)
psi22 <- c(0.023, 0.023)
plotobj <- plotSEMM_setup(pi, alpha1, alpha2, beta21, psi11, psi22)
plotSEMM_probability(plotobj)
plotSEMM_probability(plotobj , EtaName = "Latent Predictor", lnty = 2, title = "Probability")
## End(Not run)