geom_rocci {plotROC} | R Documentation |
Confidence regions for the ROC curve
Description
Display rectangular confidence regions for the empirical ROC curve.
Usage
geom_rocci(
mapping = NULL,
data = NULL,
stat = "rocci",
ci.at = NULL,
sig.level = 0.05,
na.rm = TRUE,
alpha.box = 0.3,
labels = TRUE,
labelsize = 3.88,
labelround = 1,
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...
)
GeomRocci
Arguments
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
Use to override the default connection between
|
ci.at |
Vector of values in the range of the biomarker where confidence regions will be displayed |
sig.level |
Significance level for the confidence regions |
na.rm |
If |
alpha.box |
Alpha level for the confidence regions |
labels |
If TRUE, adds text labels for the cutoffs where the confidence regions are displayed |
labelsize |
Size of cutoff text labels |
labelround |
Integer, number of significant digits to round cutoff labels |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
Format
An object of class GeomRocci
(inherits from Geom
, ggproto
, gg
) of length 6.
Aesthetics
geom_rocci
understands the following aesthetics (required aesthetics
are in bold). stat_rocci
automatically maps the estimates to the required aesthetics:
-
x
The FPF estimate -
y
The TPF estimate -
xmin
Lower confidence limit for the FPF -
xmax
Upper confidence limit for the FPF -
ymin
Lower confidence limit for the TPF -
ymax
Upper confidence limit for the TPF -
alpha
-
color
-
fill
-
linetype
-
size
See Also
See geom_roc
for the empirical ROC curve, style_roc
for
adding guidelines and labels, and direct_label
for adding direct labels to the
curves. Also export_interactive_roc for creating interactive ROC curve plots for use in a web browser.
Examples
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
Z = c(rep("A", 50), rep("B", 50)))
ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + geom_rocci()
ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci()
ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci(sig.level = .01)
ggplot(rocdata, aes(m = M, d = D)) + geom_roc(n.cuts = 0) +
geom_rocci(ci.at = quantile(rocdata$M, c(.1, .25, .5, .75, .9)))
ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci(linetype = 1)