params.GP {plgp} | R Documentation |
Extract parameters from GP particles
Description
Extract parameters from particles for Gaussian process (GP) regression, classification, or combined unknown constraint models
Usage
params.GP()
params.CGP()
params.ConstGP()
Details
Collects the parameters from each of the particles (contained in
the global variable peach
) into a
data.frame
that can be used for quick
summary
and visualization, e.g., via
hist
. These functions are also called to make
progress
visualizations in PL
Value
returns a data.frame
containing summaries for each
parameter in its columns
Author(s)
Robert B. Gramacy, rbg@vt.edu
References
Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118; arXiv:0909.5262
Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics 9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.); Oxford University Press
Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/
See Also
PL
, lpredprob.GP
,
propagate.GP
, init.GP
,
pred.GP
Examples
## See the demos via demo(package="plgp") and the examples
## section of ?plgp