Particle Learning of Gaussian Processes


[Up] [Top]

Documentation for package ‘plgp’ version 1.1-12

Help Pages

plgp-package Particle Learning of Gaussian Processes
addpall.CGP Add data to pall
addpall.ConstGP Add data to pall
addpall.GP Add data to pall
data.CGP Supply GP data to PL
data.CGP.adapt Supply GP data to PL
data.ConstGP Supply GP data to PL
data.ConstGP.improv Supply GP data to PL
data.GP Supply GP data to PL
data.GP.improv Supply GP data to PL
draw.CGP Metropolis-Hastings draw for GP parameters
draw.ConstGP Metropolis-Hastings draw for GP parameters
draw.GP Metropolis-Hastings draw for GP parameters
exp2d.C 2-d Exponential Hessian Data
init.CGP Initialize particles for GPs
init.ConstGP Initialize particles for GPs
init.GP Initialize particles for GPs
lpredprob.CGP Log-Predictive Probability Calculation for GPs
lpredprob.ConstGP Log-Predictive Probability Calculation for GPs
lpredprob.GP Log-Predictive Probability Calculation for GPs
papply Extending apply to particles
params.CGP Extract parameters from GP particles
params.ConstGP Extract parameters from GP particles
params.GP Extract parameters from GP particles
PL Particle Learning Skeleton Method
PL.env Particle Learning Skeleton Method
plgp Particle Learning Skeleton Method
pred.CGP Prediction for GPs
pred.ConstGP Prediction for GPs
pred.GP Prediction for GPs
prior.CGP Generate priors for GP models
prior.ConstGP Generate priors for GP models
prior.GP Generate priors for GP models
propagate.CGP PL propagate rule for GPs
propagate.ConstGP PL propagate rule for GPs
propagate.GP PL propagate rule for GPs
rectscale Un/Scale data in a bounding rectangle
rectunscale Un/Scale data in a bounding rectangle