plgp-package | Particle Learning of Gaussian Processes |
addpall.CGP | Add data to pall |
addpall.ConstGP | Add data to pall |
addpall.GP | Add data to pall |
data.CGP | Supply GP data to PL |
data.CGP.adapt | Supply GP data to PL |
data.ConstGP | Supply GP data to PL |
data.ConstGP.improv | Supply GP data to PL |
data.GP | Supply GP data to PL |
data.GP.improv | Supply GP data to PL |
draw.CGP | Metropolis-Hastings draw for GP parameters |
draw.ConstGP | Metropolis-Hastings draw for GP parameters |
draw.GP | Metropolis-Hastings draw for GP parameters |
exp2d.C | 2-d Exponential Hessian Data |
init.CGP | Initialize particles for GPs |
init.ConstGP | Initialize particles for GPs |
init.GP | Initialize particles for GPs |
lpredprob.CGP | Log-Predictive Probability Calculation for GPs |
lpredprob.ConstGP | Log-Predictive Probability Calculation for GPs |
lpredprob.GP | Log-Predictive Probability Calculation for GPs |
papply | Extending apply to particles |
params.CGP | Extract parameters from GP particles |
params.ConstGP | Extract parameters from GP particles |
params.GP | Extract parameters from GP particles |
PL | Particle Learning Skeleton Method |
PL.env | Particle Learning Skeleton Method |
plgp | Particle Learning Skeleton Method |
pred.CGP | Prediction for GPs |
pred.ConstGP | Prediction for GPs |
pred.GP | Prediction for GPs |
prior.CGP | Generate priors for GP models |
prior.ConstGP | Generate priors for GP models |
prior.GP | Generate priors for GP models |
propagate.CGP | PL propagate rule for GPs |
propagate.ConstGP | PL propagate rule for GPs |
propagate.GP | PL propagate rule for GPs |
rectscale | Un/Scale data in a bounding rectangle |
rectunscale | Un/Scale data in a bounding rectangle |