| Contribution-class {plasma} | R Documentation |
Class "Contribution"
Description
The Contribution object class contains the weight matrix between variables and the PLS components. The values in the weight matrix are a numeric representation of how much a variable from the omics datasets contributed to defining the final PLS components.
Usage
getCompositeWeights(object, N, M)
getAllWeights(object, N)
getFinalWeights(object)
getTop(object, N = 1)
pickSignificant(object, alpha)
## S4 method for signature 'Contribution'
summary(object, ...)
## S4 method for signature 'Contribution'
image(x, col = viridis(64), mai = c(1.82, 1.52, 0.32, 0.32), ...)
## S4 method for signature 'Contribution'
heat(object, main = "Contributions", col = viridis(64),
mai = c(1.52, 0.32, 0.82, 1.82), ...)
Arguments
object |
In the first four functions, an object of the
|
N |
in the function |
M |
name of the dataset being modeled pairwise with dataset |
alpha |
level of significance used in the |
... |
other graphical parameters. |
x |
an object of the |
main |
A character vector of length one; the main plot title. |
col |
A vector of color descriptors. |
mai |
A vector of four nonnegative numbers. |
Value
The plasma function returns a newly constructed object of the
plasma class.
Objects from the Class
Objects are defined using the getAllWeights, getCompositeWeights, getTop, or pickSignificant functions. In the simplest scenario, one would enter an object of class plasma and any specific parameters associated with the function (see arguments section for more info).
Slots
contrib:a matrix of the original variables in dataset
Nas rows and the PLS componentsMas columns.datasets:a character vector that stores the names of the datasets that were specified for the function.
Methods
summary:outputs summary statistics for the contributions of dataset
Nto components from all datasets in the case ofgetAllWeightsor datasetMin the case ofgetCompositeWeights.image:outputs a heatmap of the transposed
contribmatrix.heat:outputs a clustered heatmap of the
contribmatrix.
Author(s)
Kevin R. Coombes krc@silicovore.com, Kyoko Yamaguchi kyoko.yamaguchi@osumc.edu
Examples
fls <- try(loadESCAdata())
if (inherits(fls, "try-error")) {
stop("Unable to load data from remote server.")
}
# restrict data set size
MO <- with(plasmaEnv, prepareMultiOmics(
assemble[c("ClinicalBin", "ClinicalCont", "RPPA")], Outcome))
splitVec <- with(plasmaEnv, rbinom(nrow(Outcome), 1, 0.6))
trainD <- MO[, splitVec == 1]
testD <- MO[, splitVec == 0]
firstPass <- fitCoxModels(trainD, "Days", "vital_status", "dead")
pl <- plasma(object = trainD, multi = firstPass)
getCompositeWeights(object = pl, N = "ClinicalBin", M = "RPPA")
cbin <- getAllWeights(object = pl, N = "ClinicalBin")
summary(cbin)
image(cbin)
heat(cbin, cexCol = 0.5)
cbin01 <- pickSignificant(object = cbin, alpha = 0.01)
image(cbin01)
heat(cbin01, cexCol = 0.5)
getTop(object = cbin01, N = 3)