sample_parameters_from_covariance_matrix {pharmr} | R Documentation |
sample_parameters_from_covariance_matrix
Description
Sample parameter vectors using the covariance matrix
If parameters is not provided all estimated parameters will be used
Usage
sample_parameters_from_covariance_matrix(
model,
parameter_estimates,
covariance_matrix,
force_posdef_samples = NULL,
force_posdef_covmatrix = FALSE,
n = 1,
seed = NULL
)
Arguments
model |
(Model) Input model |
parameter_estimates |
(array) Parameter estimates to use as means in sampling |
covariance_matrix |
(data.frame) Parameter uncertainty covariance matrix |
force_posdef_samples |
(numeric (optional)) Set to how many iterations to do before forcing all samples to be positive definite. NULL is default and means never and 0 means always |
force_posdef_covmatrix |
(logical) Set to TRUE to force the input covariance matrix to be positive definite |
n |
(numeric) Number of samples |
seed |
(numeric (optional)) Random number generator |
Value
(data.frame) A dataframe with one sample per row
See Also
sample_parameters_uniformly : Sample parameter vectors using uniform distribution
sample_individual_estimates : Sample individual estiates given their covariance
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
rng <- create_rng(23)
cov <- results$covariance_matrix
pe <- results$parameter_estimates
sample_parameters_from_covariance_matrix(model, pe, cov, n=3, seed=rng)
## End(Not run)