moment-class {param2moment} R Documentation
Raw, Central and Standardized Moments, and other Distribution Characteristics
Description
Up to 4th raw E ( Y n ) \text{E}(Y^n) E ( Y n )
, central E [ ( Y − μ ) n ] \text{E}[(Y-\mu)^n] E [( Y − μ ) n ]
and
standardized moments E [ ( Y − μ ) n / σ n ] \text{E}[(Y-\mu)^n/\sigma^n] E [( Y − μ ) n / σ n ]
of the random variable
Y = ( X − location ) / scale Y = (X - \text{location})/\text{scale} Y = ( X − location ) / scale
Also, the mean, standard deviation, skewness and excess kurtosis of the random variable X X X
.
Details
For Y = ( X − location ) / scale Y = (X - \text{location})/\text{scale} Y = ( X − location ) / scale
,
let μ = E ( Y ) \mu = \text{E}(Y) μ = E ( Y )
, then, according to
Binomial theorem ,
the 2nd to 4th central moments of Y Y Y
are,
E [ ( Y − μ ) 2 ] = E ( Y 2 ) − 2 μ E ( Y ) + μ 2 = E ( Y 2 ) − μ 2 \text{E}[(Y-\mu)^2] = \text{E}(Y^2) - 2\mu \text{E}(Y) + \mu^2 = \text{E}(Y^2) - \mu^2 E [( Y − μ ) 2 ] = E ( Y 2 ) − 2 μ E ( Y ) + μ 2 = E ( Y 2 ) − μ 2
E [ ( Y − μ ) 3 ] = E ( Y 3 ) − 3 μ E ( Y 2 ) + 3 μ 2 E ( Y ) − μ 3 = E ( Y 3 ) − 3 μ E ( Y 2 ) + 2 μ 3 \text{E}[(Y-\mu)^3] = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 3\mu^2 \text{E}(Y) - \mu^3 = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 2\mu^3 E [( Y − μ ) 3 ] = E ( Y 3 ) − 3 μ E ( Y 2 ) + 3 μ 2 E ( Y ) − μ 3 = E ( Y 3 ) − 3 μ E ( Y 2 ) + 2 μ 3
E [ ( Y − μ ) 4 ] = E ( Y 4 ) − 4 μ E ( Y 3 ) + 6 μ 2 E ( Y 2 ) − 4 μ 3 E ( Y ) + μ 4 = E ( Y 4 ) − 4 μ E ( Y 3 ) + 6 μ 2 E ( Y 2 ) − 3 μ 4 \text{E}[(Y-\mu)^4] = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 4\mu^3 \text{E}(Y) + \mu^4 = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 3\mu^4 E [( Y − μ ) 4 ] = E ( Y 4 ) − 4 μ E ( Y 3 ) + 6 μ 2 E ( Y 2 ) − 4 μ 3 E ( Y ) + μ 4 = E ( Y 4 ) − 4 μ E ( Y 3 ) + 6 μ 2 E ( Y 2 ) − 3 μ 4
The distribution characteristics of Y Y Y
are,
μ Y = μ \mu_Y = \mu μ Y = μ
σ Y = E [ ( Y − μ ) 2 ] \sigma_Y = \sqrt{\text{E}[(Y-\mu)^2]} σ Y = E [( Y − μ ) 2 ]
skewness Y = E [ ( Y − μ ) 3 ] / σ Y 3 \text{skewness}_Y = \text{E}[(Y-\mu)^3] / \sigma^3_Y skewness Y = E [( Y − μ ) 3 ] / σ Y 3
kurtosis Y = E [ ( Y − μ ) 4 ] / σ Y 4 − 3 \text{kurtosis}_Y = \text{E}[(Y-\mu)^4] / \sigma^4_Y - 3 kurtosis Y = E [( Y − μ ) 4 ] / σ Y 4 − 3
The distribution characteristics of X X X
are
μ X = location + scale ⋅ μ Y \mu_X = \text{location} + \text{scale}\cdot \mu_Y μ X = location + scale ⋅ μ Y
,
σ X = scale ⋅ σ Y \sigma_X = \text{scale}\cdot \sigma_Y σ X = scale ⋅ σ Y
,
skewness X = skewness Y \text{skewness}_X = \text{skewness}_Y skewness X = skewness Y
, and
kurtosis X = kurtosis Y \text{kurtosis}_X = \text{kurtosis}_Y kurtosis X = kurtosis Y
.
Slots
distname
character scalar, name of distribution,
e.g., 'norm'
for normal, 'sn'
for skew-normal, 'st'
for skew-t t t
,
and 'GH'
for Tukey g g g
-&-h h h
distribution,
following the nomenclature of dnorm , dsn , dst and QuantileGH::dGH
location,scale
numeric scalars or vector s,
location and scale parameters
mu
numeric scalar or vector ,
1st raw moment μ = E ( Y ) \mu = \text{E}(Y) μ = E ( Y )
.
Note that the 1st central moment E ( Y − μ ) \text{E}(Y-\mu) E ( Y − μ )
and
standardized moment E ( Y − μ ) / σ \text{E}(Y-\mu)/\sigma E ( Y − μ ) / σ
are both 0.
raw2,raw3,raw4
numeric scalars or vector s,
2nd or higher raw moments E ( Y n ) \text{E}(Y^n) E ( Y n )
, n ≥ 2 n\geq 2 n ≥ 2
central2,central3,central4
numeric scalars or vector s,
2nd or higher central moments , σ 2 = E [ ( Y − μ ) 2 ] \sigma^2 = \text{E}[(Y-\mu)^2] σ 2 = E [( Y − μ ) 2 ]
and
E [ ( Y − μ ) n ] \text{E}[(Y-\mu)^n] E [( Y − μ ) n ]
, n ≥ 3 n\geq 3 n ≥ 3
standardized3,standardized4
numeric scalars or vector s,
3rd or higher standardized moments ,
skewness E [ ( Y − μ ) 3 ] / σ 3 \text{E}[(Y-\mu)^3]/\sigma^3 E [( Y − μ ) 3 ] / σ 3
and
kurtosis E [ ( Y − μ ) 4 ] / σ 4 \text{E}[(Y-\mu)^4]/\sigma^4 E [( Y − μ ) 4 ] / σ 4
.
Note that the 2nd standardized moment is 1
Note
Potential name clash with function e1071::moment
.
[Package
param2moment version 0.1.2
Index ]