moment-class {param2moment} | R Documentation |
Raw, Central and Standardized Moments, and other Distribution Characteristics
Description
Up to 4th raw \text{E}(Y^n)
, central \text{E}[(Y-\mu)^n]
and
standardized moments \text{E}[(Y-\mu)^n/\sigma^n]
of the random variable
Y = (X - \text{location})/\text{scale}
Also, the mean, standard deviation, skewness and excess kurtosis of the random variable X
.
Details
For Y = (X - \text{location})/\text{scale}
,
let \mu = \text{E}(Y)
, then, according to
Binomial theorem,
the 2nd to 4th central moments of Y
are,
\text{E}[(Y-\mu)^2] = \text{E}(Y^2) - 2\mu \text{E}(Y) + \mu^2 = \text{E}(Y^2) - \mu^2
\text{E}[(Y-\mu)^3] = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 3\mu^2 \text{E}(Y) - \mu^3 = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 2\mu^3
\text{E}[(Y-\mu)^4] = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 4\mu^3 \text{E}(Y) + \mu^4 = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 3\mu^4
The distribution characteristics of Y
are,
\mu_Y = \mu
\sigma_Y = \sqrt{\text{E}[(Y-\mu)^2]}
\text{skewness}_Y = \text{E}[(Y-\mu)^3] / \sigma^3_Y
\text{kurtosis}_Y = \text{E}[(Y-\mu)^4] / \sigma^4_Y - 3
The distribution characteristics of X
are
\mu_X = \text{location} + \text{scale}\cdot \mu_Y
,
\sigma_X = \text{scale}\cdot \sigma_Y
,
\text{skewness}_X = \text{skewness}_Y
, and
\text{kurtosis}_X = \text{kurtosis}_Y
.
Slots
distname
character scalar, name of distribution, e.g.,
'norm'
for normal,'sn'
for skew-normal,'st'
for skew-t
, and'GH'
for Tukeyg
-&-h
distribution, following the nomenclature of dnorm, dsn, dst andQuantileGH::dGH
location,scale
mu
numeric scalar or vector, 1st raw moment
\mu = \text{E}(Y)
. Note that the 1st central moment\text{E}(Y-\mu)
and standardized moment\text{E}(Y-\mu)/\sigma
are both 0.raw2,raw3,raw4
numeric scalars or vectors, 2nd or higher raw moments
\text{E}(Y^n)
,n\geq 2
central2,central3,central4
numeric scalars or vectors, 2nd or higher central moments,
\sigma^2 = \text{E}[(Y-\mu)^2]
and\text{E}[(Y-\mu)^n]
,n\geq 3
standardized3,standardized4
numeric scalars or vectors, 3rd or higher standardized moments, skewness
\text{E}[(Y-\mu)^3]/\sigma^3
and kurtosis\text{E}[(Y-\mu)^4]/\sigma^4
. Note that the 2nd standardized moment is 1
Note
Potential name clash with function e1071::moment
.