| moment-class {param2moment} | R Documentation |
Raw, Central and Standardized Moments, and other Distribution Characteristics
Description
Up to 4th raw \text{E}(Y^n), central \text{E}[(Y-\mu)^n] and
standardized moments \text{E}[(Y-\mu)^n/\sigma^n] of the random variable
Y = (X - \text{location})/\text{scale}
Also, the mean, standard deviation, skewness and excess kurtosis of the random variable X.
Details
For Y = (X - \text{location})/\text{scale},
let \mu = \text{E}(Y), then, according to
Binomial theorem,
the 2nd to 4th central moments of Y are,
\text{E}[(Y-\mu)^2] = \text{E}(Y^2) - 2\mu \text{E}(Y) + \mu^2 = \text{E}(Y^2) - \mu^2
\text{E}[(Y-\mu)^3] = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 3\mu^2 \text{E}(Y) - \mu^3 = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 2\mu^3
\text{E}[(Y-\mu)^4] = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 4\mu^3 \text{E}(Y) + \mu^4 = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 3\mu^4
The distribution characteristics of Y are,
\mu_Y = \mu
\sigma_Y = \sqrt{\text{E}[(Y-\mu)^2]}
\text{skewness}_Y = \text{E}[(Y-\mu)^3] / \sigma^3_Y
\text{kurtosis}_Y = \text{E}[(Y-\mu)^4] / \sigma^4_Y - 3
The distribution characteristics of X are
\mu_X = \text{location} + \text{scale}\cdot \mu_Y,
\sigma_X = \text{scale}\cdot \sigma_Y,
\text{skewness}_X = \text{skewness}_Y, and
\text{kurtosis}_X = \text{kurtosis}_Y.
Slots
distnamecharacter scalar, name of distribution, e.g.,
'norm'for normal,'sn'for skew-normal,'st'for skew-t, and'GH'for Tukeyg-&-hdistribution, following the nomenclature of dnorm, dsn, dst andQuantileGH::dGHlocation,scalemunumeric scalar or vector, 1st raw moment
\mu = \text{E}(Y). Note that the 1st central moment\text{E}(Y-\mu)and standardized moment\text{E}(Y-\mu)/\sigmaare both 0.raw2,raw3,raw4numeric scalars or vectors, 2nd or higher raw moments
\text{E}(Y^n),n\geq 2central2,central3,central4numeric scalars or vectors, 2nd or higher central moments,
\sigma^2 = \text{E}[(Y-\mu)^2]and\text{E}[(Y-\mu)^n],n\geq 3standardized3,standardized4numeric scalars or vectors, 3rd or higher standardized moments, skewness
\text{E}[(Y-\mu)^3]/\sigma^3and kurtosis\text{E}[(Y-\mu)^4]/\sigma^4. Note that the 2nd standardized moment is 1
Note
Potential name clash with function e1071::moment.