asym_gee {panelr} | R Documentation |
Asymmetric effects models fit with GEE
Description
Fit "within-between" and several other regression variants for panel data via generalized estimating equations.
Usage
asym_gee(
formula,
data,
id = NULL,
wave = NULL,
cor.str = c("ar1", "exchangeable", "unstructured"),
use.wave = FALSE,
wave.factor = FALSE,
min.waves = 1,
family = gaussian,
weights = NULL,
offset = NULL,
...
)
Arguments
formula |
Model formula. See details for crucial
info on |
data |
The data, either a |
id |
If |
wave |
If |
cor.str |
Any correlation structure accepted by |
use.wave |
Should the wave be included as a predictor? Default is FALSE. |
wave.factor |
Should the wave variable be treated as an unordered factor instead of continuous? Default is FALSE. |
min.waves |
What is the minimum number of waves an individual must
have participated in to be included in the analysis? Default is |
family |
Use this to specify GLM link families. Default is |
weights |
If using weights, either the name of the column in the data that contains the weights or a vector of the weights. |
offset |
this can be used to specify an a priori known
component to be included in the linear predictor during
fitting. This should be |
... |
Additional arguments provided to |
Details
See the documentation for wbm()
for many details on formula syntax and
other arguments.
Value
An asym_gee
object, which inherits from wbgee
and geeglm
.
Author(s)
Jacob A. Long
References
Allison, P. D. (2019). Asymmetric fixed-effects models for panel data. Socius, 5, 1-12. https://doi.org/10.1177/2378023119826441
McNeish, D. (2019). Effect partitioning in cross-sectionally clustered data without multilevel models. Multivariate Behavioral Research, Advance online publication. https://doi.org/10.1080/00273171.2019.1602504
McNeish, D., Stapleton, L. M., & Silverman, R. D. (2016). On the unnecessary ubiquity of hierarchical linear modeling. Psychological Methods, 22, 114-140. https://doi.org/10.1037/met0000078
Examples
if (requireNamespace("geepack")) {
data("WageData")
wages <- panel_data(WageData, id = id, wave = t)
model <- asym_gee(lwage ~ lag(union) + wks, data = wages)
summary(model)
}