packMBPLSDA-package {packMBPLSDA} | R Documentation |
Multi-Block Partial Least Squares Discriminant Analysis
Description
Several functions are provided to implement a MBPLSDA : components search, optimal model components number search, optimal model validity test by permutation tests, observed values evaluation of optimal model parameters and predicted categories, bootstrap values evaluation of optimal model parameters and predicted cross-validated categories. The use of this package is described in Brandolini-Bunlon et al (2019. Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data. Metabolomics, 15(10):134).
Details
Index of help topics:
boot_mbplsda bootstraped simulations for multi-block partial least squares discriminant analysis cvpred_mbplsda Cross-validated predicted categories from a multi-block partial least squares discriminant model disjunctive Disjunctive table ginv generalized inverse of a matrix X inertie inertia of a matrix mbplsda Multi-block partial least squares discriminant analysis medical medical dataset nutrition nutritional dataset omics metabolomic dataset packMBPLSDA-package Multi-Block Partial Least Squares Discriminant Analysis permut_mbplsda Permutation testing of a multi-block partial least squares discriminant model plot_boot_mbplsda Plot the results of the fonction boot_mbplsda in a pdf file plot_cvpred_mbplsda Plot the results of the fonction cvpred_mbplsda in a pdf file plot_permut_mbplsda Plot the results of the fonction permut_mbplsda in a pdf file plot_pred_mbplsda Plot the results of the fonction pred_mbplsda in a pdf file plot_testdim_mbplsda Plot the results of the fonction testdim_mbplsda in a pdf file pred_mbplsda Observed parameters and predicted categories from a multi-block partial least squares discriminant model status physiopathological status data testdim_mbplsda Test of number of components by two-fold cross-validation for a multi-block partial least squares discriminant model
Author(s)
Marion Brandolini-Bunlon, Stephanie Bougeard, Melanie Petera, Estelle Pujos-Guillot
Maintainer: Marion Brandolini-Bunlon <marion.brandolini-bunlon@inra.fr>
References
Brandolini-Bunlon, M., Petera, M., Gaudreau, P., Comte, B., Bougeard, S., Pujos-Guillot, E.(2019). A new tool for multi-block PLS discriminant analysis of metabolomic data: application to systems epidemiology. Presented at 12emes Journees Scientifiques RFMF, Clermont-Ferrand, FRA(05-21-2019 - 05-23-2019).
Brandolini-Bunlon, M., Petera, M., Gaudreau, P., Comte, B., Bougeard, S., Pujos-Guillot, E.(2019). Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data. Metabolomics, 15(10):134
Brandolini-Bunlon, M., Petera, M., Gaudreau, P., Comte, B., Bougeard, S., Pujos-Guillot, E.(2020). A new tool for multi-block PLS discriminant analysis of metabolomic data: application to systems epidemiology. Presented at Chimiometrie 2020, Liege, BEL(01-27-2020 - 01-29-2020).
See Also
mbplsda
testdim_mbplsda
plot_testdim_mbplsda
permut_mbplsda
plot_permut_mbplsda
pred_mbplsda
plot_pred_mbplsda
cvpred_mbplsda
plot_cvpred_mbplsda
boot_mbplsda
plot_boot_mbplsda
Examples
data(status)
data(medical)
data(omics)
data(nutrition)
ktabX <- ktab.list.df(list(medical = medical, nutrition = nutrition, omics = omics))
disjonctif <- (disjunctive(status))
dudiY <- dudi.pca(disjonctif , center = FALSE, scale = FALSE, scannf = FALSE)
modelembplsQ <- mbplsda(dudiY, ktabX, scale = TRUE, option = "uniform", scannf = FALSE, nf = 2)