| packMBPLSDA-package {packMBPLSDA} | R Documentation |
Multi-Block Partial Least Squares Discriminant Analysis
Description
Several functions are provided to implement a MBPLSDA : components search, optimal model components number search, optimal model validity test by permutation tests, observed values evaluation of optimal model parameters and predicted categories, bootstrap values evaluation of optimal model parameters and predicted cross-validated categories. The use of this package is described in Brandolini-Bunlon et al (2019. Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data. Metabolomics, 15(10):134).
Details
Index of help topics:
boot_mbplsda bootstraped simulations for multi-block partial
least squares discriminant analysis
cvpred_mbplsda Cross-validated predicted categories from a
multi-block partial least squares discriminant
model
disjunctive Disjunctive table
ginv generalized inverse of a matrix X
inertie inertia of a matrix
mbplsda Multi-block partial least squares discriminant
analysis
medical medical dataset
nutrition nutritional dataset
omics metabolomic dataset
packMBPLSDA-package Multi-Block Partial Least Squares Discriminant
Analysis
permut_mbplsda Permutation testing of a multi-block partial
least squares discriminant model
plot_boot_mbplsda Plot the results of the fonction boot_mbplsda
in a pdf file
plot_cvpred_mbplsda Plot the results of the fonction cvpred_mbplsda
in a pdf file
plot_permut_mbplsda Plot the results of the fonction permut_mbplsda
in a pdf file
plot_pred_mbplsda Plot the results of the fonction pred_mbplsda
in a pdf file
plot_testdim_mbplsda Plot the results of the fonction
testdim_mbplsda in a pdf file
pred_mbplsda Observed parameters and predicted categories
from a multi-block partial least squares
discriminant model
status physiopathological status data
testdim_mbplsda Test of number of components by two-fold
cross-validation for a multi-block partial
least squares discriminant model
Author(s)
Marion Brandolini-Bunlon, Stephanie Bougeard, Melanie Petera, Estelle Pujos-Guillot
Maintainer: Marion Brandolini-Bunlon <marion.brandolini-bunlon@inra.fr>
References
Brandolini-Bunlon, M., Petera, M., Gaudreau, P., Comte, B., Bougeard, S., Pujos-Guillot, E.(2019). A new tool for multi-block PLS discriminant analysis of metabolomic data: application to systems epidemiology. Presented at 12emes Journees Scientifiques RFMF, Clermont-Ferrand, FRA(05-21-2019 - 05-23-2019).
Brandolini-Bunlon, M., Petera, M., Gaudreau, P., Comte, B., Bougeard, S., Pujos-Guillot, E.(2019). Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data. Metabolomics, 15(10):134
Brandolini-Bunlon, M., Petera, M., Gaudreau, P., Comte, B., Bougeard, S., Pujos-Guillot, E.(2020). A new tool for multi-block PLS discriminant analysis of metabolomic data: application to systems epidemiology. Presented at Chimiometrie 2020, Liege, BEL(01-27-2020 - 01-29-2020).
See Also
mbplsda
testdim_mbplsda
plot_testdim_mbplsda
permut_mbplsda
plot_permut_mbplsda
pred_mbplsda
plot_pred_mbplsda
cvpred_mbplsda
plot_cvpred_mbplsda
boot_mbplsda
plot_boot_mbplsda
Examples
data(status)
data(medical)
data(omics)
data(nutrition)
ktabX <- ktab.list.df(list(medical = medical, nutrition = nutrition, omics = omics))
disjonctif <- (disjunctive(status))
dudiY <- dudi.pca(disjonctif , center = FALSE, scale = FALSE, scannf = FALSE)
modelembplsQ <- mbplsda(dudiY, ktabX, scale = TRUE, option = "uniform", scannf = FALSE, nf = 2)