plot.roc {pROC} | R Documentation |
Plot a ROC curve
Description
This function plots a ROC curve. It can accept many arguments to
tweak the appearance of the plot. Two syntaxes are possible: one
object of class “roc”, or either two vectors (response, predictor) or a
formula (response~predictor) as in the roc
function.
Usage
## S3 method for class 'roc'
plot(x, ...)
## S3 method for class 'smooth.roc'
plot(x, ...)
## S3 method for class 'roc'
plot.roc(x, add=FALSE, reuse.auc=TRUE,
axes=TRUE, legacy.axes=FALSE,
# Generic arguments for par:
xlim=if(x$percent){c(100, 0)} else{c(1, 0)},
ylim=if(x$percent){c(0, 100)} else{c(0, 1)},
xlab=ifelse(x$percent, ifelse(legacy.axes, "100 - Specificity (%)", "Specificity (%)"),
ifelse(legacy.axes, "1 - Specificity", "Specificity")),
ylab=ifelse(x$percent, "Sensitivity (%)", "Sensitivity"),
asp=1,
mar=c(4, 4, 2, 2)+.1,
mgp=c(2.5, 1, 0),
# col, lty and lwd for the ROC line only
col=par("col"),
lty=par("lty"),
lwd=2,
type="l",
# Identity line
identity=!add,
identity.col="darkgrey",
identity.lty=1,
identity.lwd=1,
# Print the thresholds on the plot
print.thres=FALSE,
print.thres.pch=20,
print.thres.adj=c(-.05,1.25),
print.thres.col="black",
print.thres.pattern=ifelse(x$percent, "%.1f (%.1f%%, %.1f%%)", "%.3f (%.3f, %.3f)"),
print.thres.cex=par("cex"),
print.thres.pattern.cex=print.thres.cex,
print.thres.best.method=NULL,
print.thres.best.weights=c(1, 0.5),
# Print the AUC on the plot
print.auc=FALSE,
print.auc.pattern=NULL,
print.auc.x=ifelse(x$percent, 50, .5),
print.auc.y=ifelse(x$percent, 50, .5),
print.auc.adj=c(0,1),
print.auc.col=col,
print.auc.cex=par("cex"),
# Grid
grid=FALSE,
grid.v={if(is.logical(grid) && grid[1]==TRUE)
{seq(0, 1, 0.1) * ifelse(x$percent, 100, 1)}
else if(is.numeric(grid))
{seq(0, ifelse(x$percent, 100, 1), grid[1])} else {NULL}},
grid.h={if (length(grid) == 1) {grid.v}
else if (is.logical(grid) && grid[2]==TRUE)
{seq(0, 1, 0.1) * ifelse(x$percent, 100, 1)}
else if(is.numeric(grid))
{seq(0, ifelse(x$percent, 100, 1), grid[2])} else {NULL}},
grid.lty=3,
grid.lwd=1,
grid.col="#DDDDDD",
# Polygon for the AUC
auc.polygon=FALSE,
auc.polygon.col="gainsboro",
auc.polygon.lty=par("lty"),
auc.polygon.density=NULL,
auc.polygon.angle=45,
auc.polygon.border=NULL,
# Polygon for the maximal AUC possible
max.auc.polygon=FALSE,
max.auc.polygon.col="#EEEEEE",
max.auc.polygon.lty=par("lty"),
max.auc.polygon.density=NULL,
max.auc.polygon.angle=45,
max.auc.polygon.border=NULL,
# Confidence interval
ci=!is.null(x$ci),
ci.type=c("bars", "shape", "no"),
ci.col=ifelse(ci.type=="bars", par("fg"), "gainsboro"),
...)
## S3 method for class 'formula'
plot.roc(x, data, subset, na.action, ...)
## Default S3 method:
plot.roc(x, predictor, ...)
## S3 method for class 'smooth.roc'
plot.roc(x, ...)
Arguments
x |
a roc object from the roc function (for plot.roc.roc), a formula (for plot.roc.formula) or a response vector (for plot.roc.default). |
predictor , data |
arguments for the roc function. |
subset , na.action |
arguments for |
add |
if TRUE, the ROC curve will be added to an existing plot. If FALSE (default), a new plot will be created. |
reuse.auc |
if |
axes |
a logical indicating if the plot axes must be drawn. |
legacy.axes |
a logical indicating if the specificity axis (x
axis) must be plotted as as decreasing “specificity”
( |
xlim , ylim , xlab , ylab , asp , mar , mgp |
Generic arguments for the
plot. See plot and plot.window for more details. Only
used if |
col , lty , lwd |
color, line type and line width for the ROC curve. See par for more details. |
type |
type of plotting as in |
identity |
logical: whether or not the identity line (no discrimination line) must be displayed. Default: only on new plots. |
identity.col , identity.lty , identity.lwd |
color, line type and line width for the identity line. Used only if identity=TRUE. See par for more details. |
print.thres |
Should a selected set of thresholds be displayed on
the ROC curve? |
print.thres.pch , print.thres.adj , print.thres.col , print.thres.cex |
the plotting character (pch), text string adjustment (adj), color (col) and character expansion factor (cex) parameters for the printing of the thresholds. See points and par for more details. |
print.thres.pattern |
the text pattern for the thresholds, as a sprintf format. Three numerics are passed to sprintf: threshold, specificity, sensitivity. |
print.thres.pattern.cex |
the character expansion factor (cex) for the threshold text pattern. See par for more details. |
print.thres.best.method , print.thres.best.weights |
if
|
print.auc |
boolean. Should the numeric value of AUC be printed on the plot? |
print.auc.pattern |
the text pattern for the AUC, as a sprintf format. If NULL, a reasonable value is computed that takes partial AUC, CI and percent into account. If the CI of the AUC was computed, three numerics are passed to sprintf: AUC, lower CI bound, higher CI bound. Otherwise, only AUC is passed. |
print.auc.x , print.auc.y |
x and y position for the printing of the AUC. |
print.auc.adj , print.auc.cex , print.auc.col |
the text adjustment, character expansion factor and color for the printing of the AUC. See par for more details. |
grid |
boolean or numeric vector of length 1 or 2. Should a background grid be added to the plot? Numeric: show a grid with the specified interval between each line; Logical: show the grid or not. Length 1: same values are taken for horizontal and vertical lines. Length 2: grid value for vertical (grid[1]) and horizontal (grid[2]). Note that these values are used to compute grid.v and grid.h. Therefore if you specify a grid.h and grid.v, it will be ignored. |
grid.v , grid.h |
numeric. The x and y values at which a vertical or horizontal line (respectively) must be drawn. NULL if no line must be added. |
grid.lty , grid.lwd , grid.col |
the line type (lty), line width (lwd) and color (col) of the lines of the grid. See par for more details. Note that you can pass vectors of length 2, in which case it specifies the vertical (1) and horizontal (2) lines. |
auc.polygon |
boolean. Whether or not to display the area as a polygon. |
auc.polygon.col , auc.polygon.lty , auc.polygon.density , auc.polygon.angle , auc.polygon.border |
color (col), line type
(lty), density, angle and border for the AUC polygon. See
|
max.auc.polygon |
boolean. Whether or not to display the maximal possible area as a polygon. |
max.auc.polygon.col , max.auc.polygon.lty , max.auc.polygon.density , max.auc.polygon.angle , max.auc.polygon.border |
color (col), line type
(lty), density, angle and border for the maximum AUC polygon. See
|
ci |
boolean. Should we plot the confidence intervals? |
ci.type , ci.col |
|
... |
further arguments passed to or from other methods,
especially arguments for |
Details
This function is typically called from roc
when plot=TRUE (not by
default). plot.roc.formula
and plot.roc.default
are convenience methods
that build the ROC curve (with the roc
function) before
calling plot.roc.roc
. You can pass them arguments for both
roc
and plot.roc.roc
. Simply use plot.roc
that will dispatch to the correct method.
The plotting is done in the following order:
A new plot is created if
add=FALSE
.The grid is added if
grid.v
andgrid.h
are not NULL.The maximal AUC polygon is added if
max.auc.polygon=TRUE
.The CI shape is added if
ci=TRUE
,ci.type="shape"
andx$ci
isn't a “ci.auc”.The AUC polygon is added if
auc.polygon=TRUE
.The identity line if
identity=TRUE
.The actual ROC line is added.
The CI bars are added if
ci=TRUE
,ci.type="bars"
andx$ci
isn't a “ci.auc”.The selected thresholds are printed if
print.thres
isTRUE
or numeric.The AUC is printed if
print.auc=TRUE
.
Graphical functions are called with suppressWarnings.
Value
This function returns a list of class “roc” invisibly. See roc for more details.
AUC specification
For print.auc
, auc.polygon
and max.auc.polygon
arguments, an AUC specification is
required. By default, the total AUC is plotted, but you may want a
partial AUCs. The specification is defined by:
the “auc” field in the “roc” object if
reuse.auc
is set toTRUE
(default). It is naturally inherited from any call toroc
and fits most cases.passing the specification to
auc
with ... (argumentspartial.auc
,partial.auc.correct
andpartial.auc.focus
). In this case, you must ensure either that theroc
object do not contain anauc
field (if you calledroc
withauc=FALSE
), or setreuse.auc=FALSE
.
If reuse.auc=FALSE
the auc
function will always
be called with ...
to determine the specification, even if
the “roc” object do contain an auc
field.
As well if the “roc” object do not contain an auc
field, the auc
function will always be called with
...
to determine the specification.
Warning: if the roc object passed to plot.roc contains an auc
field and reuse.auc=TRUE
, auc is not called and
arguments such as partial.auc
are silently ignored.
References
Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: doi: 10.1186/1471-2105-12-77.
See Also
Examples
# Create a few ROC curves:
data(aSAH)
roc.s100b <- roc(aSAH$outcome, aSAH$s100b)
roc.wfns <- roc(aSAH$outcome, aSAH$wfns)
roc.ndka <- roc(aSAH$outcome, aSAH$wfns)
# Simple example:
plot(roc.s100b)
# Add a smoothed ROC:
plot(smooth(roc.s100b), add=TRUE, col="blue")
legend("bottomright", legend=c("Empirical", "Smoothed"),
col=c(par("fg"), "blue"), lwd=2)
# With more options:
plot(roc.s100b, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2),
grid.col=c("green", "red"), max.auc.polygon=TRUE,
auc.polygon.col="lightblue", print.thres=TRUE)
# To plot a different partial AUC, we need to ignore the existing value
# with reuse.auc=FALSE:
plot(roc.s100b, print.auc=TRUE, auc.polygon=TRUE, partial.auc=c(1, 0.8),
partial.auc.focus="se", grid=c(0.1, 0.2), grid.col=c("green", "red"),
max.auc.polygon=TRUE, auc.polygon.col="lightblue",
print.thres=TRUE, print.thres.adj = c(1, -1),
reuse.auc=FALSE)
# Add a second ROC curve to the previous plot:
plot(roc.wfns, add=TRUE)
# Plot some thresholds, add them to the same plot
plot(roc.ndka, print.thres="best", print.thres.best.method="youden")
plot(roc.ndka, print.thres="best", print.thres.best.method="closest.topleft",
add = TRUE)
plot(roc.ndka, print.thres="best", print.thres.best.method="youden",
print.thres.best.weights=c(50, 0.2),
print.thres.adj = c(1.1, 1.25),
add = TRUE)