pGRN {pGRN} | R Documentation |
pGRN: creates gene regulatory network based on single cell pseudotime information
Description
Given single cell matrix and pseudotime, construct gene regulatory network (GRN)
Usage
pGRN(
expression_matrix,
pseudotime_list,
method = "DTW",
slide_window_size = 20,
slide_step_size = 10,
centrality_degree_mod = "out",
components_mod = "weak",
network_min_genes = 10,
quantile_cutoff = 5,
order = 1,
cores = 1
)
Arguments
expression_matrix |
expression matrix data |
pseudotime_list |
list of pseudotime |
method |
method for GRN construction: DTW, granger |
slide_window_size |
sliding window size |
slide_step_size |
sliding window step size |
centrality_degree_mod |
(for DTW method) mode of centrality degree for popularity calculation |
components_mod |
(for DTW method) mode of sub-network extraction methods (weak or strong) |
network_min_genes |
minimal number of gene elements required for extracted sub-networks |
quantile_cutoff |
an integer value (1-99) for quantile cutoff |
order |
(for granger method) integer specifying the order of lags to include in the auxiliary regression |
cores |
number of cores for parallel computing |
Value
a list of tabl_graph objects
Examples
example_data <- pGRNDB
expression_matrix <- example_data[["expression"]]
pseudotime_list <- example_data[["ptime"]]$PseudoTime
# try DTW method
nets <- pGRN(expression_matrix,
pseudotime_list,
method= "DTW",
quantile_cutoff=50,
cores=1)
plot_network(nets[[1]])
# plot the network interactively
plot_network_i(nets[[1]])
[Package pGRN version 0.3.5 Index]