bootstrap {ouch} | R Documentation |
Bootstrapping for uncertainty quantification
Description
Parametric bootstrapping for ouch models.
Usage
## S4 method for signature 'missing'
bootstrap(object, ...)
## S4 method for signature 'ANY'
bootstrap(object, ...)
## S4 method for signature 'hansentree'
bootstrap(object, nboot = 200, seed = NULL, ...)
## S4 method for signature 'browntree'
bootstrap(object, nboot = 200, seed = NULL, ...)
Arguments
object |
A fitted model object. |
... |
Additional arguments are passed to |
nboot |
integer; number of bootstrap replicates. |
seed |
integer; setting |
Details
bootstrap
performs a parametric bootstrap for estimation of confidence intervals.
See Also
Other methods for ouch trees:
as_data_frame
,
coef()
,
logLik
,
ouch-package
,
paint()
,
plot()
,
print()
,
simulate()
,
summary()
,
update()
Examples
## Not run:
## Fit BM and a 5-regime OU model to the A. bimaculatus data
tree <- with(bimac,ouchtree(node,ancestor,time/max(time),species))
h1 <- brown(
data=log(bimac['size']),
tree=tree
)
h5 <- hansen(
data=log(bimac['size']),
tree=tree,
regimes=bimac['OU.LP'],
sqrt.alpha=1,
sigma=1,
reltol=1e-11,
parscale=c(0.1,0.1),
hessian=TRUE
)
## What are appropriate AIC.c cutoffs?
simdat <- simulate(h1,nsim=100,seed=92759587)
b1 <- sapply(simdat,function(x)summary(update(h1,data=x))$aic.c)
tic <- Sys.time()
b5 <- sapply(simdat,function(x)summary(update(h5,data=x))$aic.c)
toc <- Sys.time()
print(toc-tic)
cat("approximate 95% AIC.c cutoff",signif(quantile(b1-b5,0.95),digits=3),"\n")
## Bootstrap confidence intervals
boots.h1 <- bootstrap(h1,nboot=200,seed=92759587)
cat("bootstrap 95% confidence intervals for h1:\n")
print(t(sapply(boots.h1,quantile,probs=c(0.025,0.975))),digits=3)
boots.h5 <- bootstrap(h5,nboot=200,seed=92759587)
cat("bootstrap 95% confidence intervals for h5:\n")
print(t(sapply(boots.h5,quantile,probs=c(0.025,0.975))),digits=3)
## End(Not run)
[Package ouch version 2.20 Index]