generator.otrimle {otrimle} | R Documentation |
Generates random data from OTRIMLE output model
Description
This uses data and the output of otrimle
or
rimle
to generate a new artificial dataset of the size
of the original data using noise and cluster proportions from the
clustering output. The clusters are then generated from multivariate
normal distributions with the parameters estimated by
otrimle
, the noise is generated resampling from what is
estimated as moise component with weights given by posterior
probabilities of all observations to be noise. See Hennig and Coretto
(2021).
Usage
generator.otrimle(data, fit)
Arguments
data |
something that can be coerced into a matrix. Dataset. |
fit |
Value
A list with components data, clustering
.
data |
matrix of generated data. |
cs |
vector of integers. Clustering indicator. |
Author(s)
Christian Hennig christian.hennig@unibo.it https://www.unibo.it/sitoweb/christian.hennig/en/
References
Hennig, C. and P.Coretto (2021). An adequacy approach for deciding the number of clusters for OTRIMLE robust Gaussian mixture based clustering. To appear in Australian and New Zealand Journal of Statistics, https://arxiv.org/abs/2009.00921.
See Also
kerndensp
, kerndensmeasure
,
otrimle
, rimle
Examples
data(banknote)
selectdata <- c(1:30,101:110,117:136,160:161)
set.seed(555566)
x <- banknote[selectdata,5:7]
ox <- otrimle(x, G=2 , ncores = 1)
str(generator.otrimle(x, ox))