optR.formula {optR} | R Documentation |
Optimization & predictive modelling Toolsets
Description
optR package to perform the optimization using numerical methods
Usage
## S3 method for class 'formula'
optR(formula, data = list(), weights = NULL,
method = c("gauss, LU, gaussseidel", "cgm", "choleski"), iter = 500,
tol = 1e-07, keep.data = TRUE, contrasts = NULL, ...)
Arguments
formula |
: formula to build model |
data |
: data used to build model |
weights |
: Observation weights |
method |
: "gauss" for gaussian elimination and "LU" for LU factorization |
iter |
: Number of Iterations |
tol |
: Convergence tolerance |
keep.data |
: If TRUE returns input data |
contrasts |
: Data frame contract values |
... |
: S3 Class |
Value
U : Decomposed matrix for Gauss-ELimination Ax=b is converted into Ux=c where U is upper triangular matrix for LU decomposition U contain the values for L & U decomposition LUx=b
c : transformed b & for LU transformation c is y from equation Ux=y
estimates : Return x values for linear system
Author(s)
PKS Prakash
Examples
# Solving equation Ax=b
b<-matrix(c(-14,36, 6), nrow=3,ncol=1,byrow=TRUE)
A<-matrix(c(6,-4,1, -4,6,-4,1,-4,6), nrow=3,ncol=3, byrow = TRUE)
Z<-optR(b~A-1, method="gauss") # -1 to remove the constant vector
Z<-optR(b~A-1, method="LU") # -1 to remove the constant vector
require(utils)
set.seed(129)
n <- 10 ; p <- 4
X <- matrix(rnorm(n * p), n, p) # no intercept!
y <- rnorm(n)
data<-cbind(X, y)
colnames(data)<-c("var1", "var2", "var3", "var4", "y")
Z<-optR(y~var1+var2+var3+var4+var1*var2-1, data=data.frame(data), method="cgm")
[Package optR version 1.2.5 Index]