stackplotVA {openVA} | R Documentation |
plot grouped CSMF from a "insilico" object
Description
Produce bar plot of the CSMFs for a fitted object in broader groups. This function extends the stackplot() function in the InSilicoVA package to allow for the same visualization for results from InterVA, NBC, and Tariff algorithms.
Usage
stackplotVA(
x,
grouping = NULL,
type = c("stack", "dodge")[1],
group_order = NULL,
err = TRUE,
CI = 0.95,
sample_size_print = FALSE,
xlab = "",
ylab = "CSMF",
ylim = NULL,
title = "CSMF by broader cause categories",
horiz = FALSE,
angle = 0,
err_width = 0.4,
err_size = 0.6,
border = "black",
bw = FALSE,
filter_legend = FALSE,
...
)
Arguments
x |
one or a list of fitted object from |
grouping |
C by 2 matrix of grouping rule. If set to NULL, make it default. |
type |
type of the plot to make |
group_order |
list of grouped categories. If set to NULL, make it default. |
err |
indicator of inclusion of error bars |
CI |
Level of posterior credible intervals. |
sample_size_print |
Logical indicator for printing also the sample size for each sub-population labels. |
xlab |
Labels for the causes. |
ylab |
Labels for the CSMF values. |
ylim |
Range of y-axis. |
title |
Title of the plot. |
horiz |
Logical indicator indicating if the bars are plotted horizontally. |
angle |
Angle of rotation for the texts on x axis when |
err_width |
Size of the error bars. |
err_size |
Thickness of the error bar lines. |
border |
The color for the border of the bars. |
bw |
Logical indicator for setting the theme of the plots to be black and white. |
filter_legend |
Logical indicator for including all broad causes in the plot legend (default; FALSE) or filtering to only the broad causes in the data being plotted |
... |
Not used. |
Author(s)
Zehang Li, Tyler McCormick, Sam Clark
Maintainer: Zehang Li <lizehang@uw.edu>
See Also
Other visualization:
plotVA()
Examples
data(RandomVA3)
test <- RandomVA3[1:200, ]
train <- RandomVA3[201:400, ]
fit1 <- codeVA(data = test, data.type = "customize", model = "InSilicoVA",
data.train = train, causes.train = "cause",
Nsim=1000, auto.length = FALSE)
fit2 <- codeVA(data = test, data.type = "customize", model = "InterVA",
data.train = train, causes.train = "cause", write=FALSE,
version = "4.02", HIV = "h", Malaria = "l")
fit3 <- codeVA(data = test, data.type = "customize", model = "Tariff",
data.train = train, causes.train = "cause",
nboot.sig = 100)
data(SampleCategory)
stackplotVA(fit1, grouping = SampleCategory, type ="dodge",
ylim = c(0, 1), title = "InSilicoVA")
stackplotVA(fit2, grouping = SampleCategory, type = "dodge",
ylim = c(0, 1), title = "InterVA4.02")
stackplotVA(fit3, grouping = SampleCategory, type = "dodge",
ylim = c(0, 1), title = "Tariff")