quantBisect {openEBGM} | R Documentation |
Find quantiles of the posterior distribution
Description
quantBisect
finds the desired quantile of the posterior distribution
using the bisection method. Used to create credibility limits.
Usage
quantBisect(
percent,
theta_hat,
N,
E,
qn,
digits = 2,
limits = c(-1e+05, 1e+05),
max_iter = 2000
)
Arguments
percent |
A numeric scalar between 1 and 99 for the desired percentile (e.g., 5 for 5th percentile). |
theta_hat |
A numeric vector of hyperparameter estimates (likely from
|
N |
A whole number vector of actual counts from
|
E |
A numeric vector of expected counts from |
qn |
A numeric vector of posterior probabilities that |
digits |
A scalar whole number that determines the number of decimal places used when rounding the results. |
limits |
A whole number vector of length 2 for the upper and lower bounds of the search space. |
max_iter |
A whole number scalar for the maximum number of iterations. Used to prevent infinite loops. |
Details
The hyperparameter estimates (theta_hat
) are:
\alpha_1, \beta_1
: Parameter estimates of the first component of the prior distribution\alpha_2, \beta_2
: Parameter estimates of the second componentP
: Mixture fraction estimate of the prior distribution
Although this function can find any quantile of the posterior distribution, it will often be used to calculate the 5th and 95th percentiles to create a 90% credibility interval.
The quantile is calculated by solving for x
in the general
equation F(x) = cutoff
, or equivalently, F(x) - cutoff = 0
,
where F(x)
is the cumulative distribution function of the posterior
distribution and cutoff
is the appropriate cutoff level (e.g., 0.05
for the 5th percentile).
Value
A numeric vector of quantile estimates.
Warning
The digits
argument determines the tolerance for the bisection
algorithm. The more decimal places you want returned, the longer the run
time.
See Also
https://en.wikipedia.org/wiki/Bisection_method
autoHyper
, exploreHypers
,
negLLsquash
, negLL
,
negLLzero
, and negLLzeroSquash
for
hyperparameter estimation.
processRaw
for finding counts.
Qn
for finding mixture fractions.
Other posterior distribution functions:
Qn()
,
ebgm()
Examples
data.table::setDTthreads(2) #only needed for CRAN checks
theta_init <- data.frame(
alpha1 = c(0.5, 1),
beta1 = c(0.5, 1),
alpha2 = c(2, 3),
beta2 = c(2, 3),
p = c(0.1, 0.2)
)
data(caers)
proc <- processRaw(caers)
squashed <- squashData(proc, bin_size = 300, keep_pts = 10)
squashed <- squashData(squashed, count = 2, bin_size = 13, keep_pts = 10)
theta_hat <- autoHyper(data = squashed, theta_init = theta_init)$estimates
qn <- Qn(theta_hat, N = proc$N, E = proc$E)
proc$QUANT_05 <- quantBisect(percent = 5, theta = theta_hat, N = proc$N,
E = proc$E, qn = qn)
## Not run: proc$QUANT_95 <- quantBisect(percent = 95, theta = theta_hat,
N = proc$N, E = proc$E, qn = qn)
## End(Not run)
head(proc)