ghapca {onlinePCA} | R Documentation |
Generalized Hebbian Algorithm for PCA
Description
Online PCA with the GHA of Sanger (1989).
Usage
ghapca(lambda, U, x, gamma, q = length(lambda), center, sort = TRUE)
Arguments
lambda |
optional vector of eigenvalues. |
U |
matrix of eigenvectors (PC) stored in columns. |
x |
new data vector. |
gamma |
vector of gain parameters. |
q |
number of eigenvectors to compute. |
center |
optional centering vector for |
sort |
Should the new eigenpairs be sorted? |
Details
The vector gamma
determines the weight placed on the new data in updating each eigenvector (the first coefficient of gamma
corresponds to the first eigenvector, etc). It can be specified as a single positive number or as a vector of length ncol(U)
. Larger values of gamma
place more weight on x
and less on U
. A common choice for (the components of) gamma
is of the form c/n
, with n
the sample size and c
a suitable positive constant.
If sort
is TRUE and lambda
is not missing, the updated eigenpairs are sorted by decreasing eigenvalue. Otherwise, they are not sorted.
Value
A list with components
values |
updated eigenvalues or NULL. |
vectors |
updated eigenvectors. |
References
Sanger (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks.
See Also
Examples
## Initialization
n <- 1e4 # sample size
n0 <- 5e3 # initial sample size
d <- 10 # number of variables
q <- d # number of PC
x <- matrix(runif(n*d), n, d)
x <- x %*% diag(sqrt(12*(1:d)))
# The eigenvalues of X are close to 1, 2, ..., d
# and the corresponding eigenvectors are close to
# the canonical basis of R^d
## GHA PCA
pca <- princomp(x[1:n0,])
xbar <- pca$center
pca <- list(values=pca$sdev[1:q]^2, vectors=pca$loadings[,1:q])
for (i in (n0+1):n) {
xbar <- updateMean(xbar, x[i,], i-1)
pca <- ghapca(pca$values, pca$vectors, x[i,], 2/i, q, xbar)
}