wgf.test {onewaytests} | R Documentation |
Weerahandi's Generalized F Test
Description
wgf.test
performs Weerahandi's generalized F test.
Usage
wgf.test(formula, data, N = 10^5, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
Arguments
formula |
a formula of the form |
data |
a tibble or data frame containing the variables in |
N |
the number of bootstrap samples. Default is set to 10^5. |
alpha |
the level of significance to assess the statistical difference. Default is set to alpha = 0.05. |
na.rm |
a logical value indicating whether NA values should be stripped before the computation proceeds. |
verbose |
a logical for printing output to R console. |
Value
A list with class "owt" containing the following components:
p.value |
the p-value of Weerahandi's generalized F test. |
alpha |
the level of significance to assess the statistical difference. |
method |
the character string "Weerahandi's Generalized F Test". |
data |
a data frame containing the variables in which NA values (if exist) are removed. |
formula |
a formula of the form |
N |
the number of bootstrap samples. |
Note
The user can contact the author of this code, Sam Weerahandi, for additional information about the method and the code.
Author(s)
Sam Weerahandi
References
Weerahandi, S. (1995). ANOVA under Unequal Error Variances. Biometrics, 589-599.
Examples
library(onewaytests)
wgf.test(Sepal.Length ~ Species, data = iris)
out <- wgf.test(Sepal.Length ~ Species, data = iris)
paircomp(out)