ZBOLLG {ollg} | R Documentation |
The Zografos-Balakrishnan Odd log-logistic family of distributions (ZBOLL-G)
Description
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2016) specified by the pdf
f=\frac{\alpha\,g\,G^{\alpha-1}\bar{G}^{\alpha-1}}{\Gamma(\beta)[G^\alpha+\bar{G}^\alpha]^2}\,\{-\log[1-\frac{G^\alpha}{G^\alpha+\bar{G}^\alpha}]\}^{\beta-1}
for G
any valid continuous cdf , \bar{G}=1-G
, g
the corresponding pdf, \Gamma(\beta)
the Gamma funcion, \alpha > 0
, the first shape parameter, and \beta > 0
, the second shape parameter.
Usage
pzbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
dzbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
qzbollg(q, alpha = 1, beta = 1, G = pnorm, ...)
rzbollg(n, alpha = 1, beta = 1, G = pnorm, ...)
hzbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
Value
pzbollg
gives the distribution function,
dzbollg
gives the density,
qzbollg
gives the quantile function,
hzbollg
gives the hazard function and
rzbollg
generates random variables from the The Zografos-Balakrishnan Odd log-logistic family of
distributions (ZBOLL-G) for baseline cdf G.
References
Cordeiro, G. M., Alizadeh, M., Ortega, E. M., Serrano, L. H. V. (2016). The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications. Hacettepe Journal of Mathematics and Statistics, 45(6), 1781-1803. .
Examples
x <- seq(0, 1, length.out = 21)
pzbollg(x)
pzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
dzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(dzbollg, -3, 3)
qzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
n <- 10
rzbollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
hzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(hzbollg, -3, 3)