OBuG {ollg} | R Documentation |
Odd Burr generated family of distributions (OBu-G)
Description
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Alizadeh et al. (2017) specified by the pdf
f=\frac{\alpha\beta\,g\,G^{\alpha-1}\bar{G}^{\alpha\,\beta-1}}{[G^\alpha+\bar{G}^\alpha]^{\beta+1}}
for G
any valid continuous cdf , \bar{G}=1-G
, g
the corresponding pdf, \alpha > 0
, the first shape parameter, and \beta > 0
, the second shape parameter.
Usage
pobug(x, alpha = 1, beta = 1, G = pnorm, ...)
dobug(x, alpha = 1, beta = 1, G = pnorm, ...)
qobug(q, alpha = 1, beta = 1, G = pnorm, ...)
robug(n, alpha = 1, beta = 1, G = pnorm, ...)
hobug(x, alpha = 1, beta = 1, G = pnorm, ...)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
Value
pobug
gives the distribution function,
dobug
gives the density,
qobug
gives the quantile function,
hobug
gives the hazard function and
robug
generates random variables from the Odd Burr generated family of
distributions (OBu-G) for baseline cdf G.
References
Alizadeh, M., Cordeiro, G. M., Nascimento, A. D., Lima, M. D. C. S., Ortega, E. M. (2017). Odd-Burr generalized family of distributions with some applications. Journal of statistical computation and simulation, 87(2), 367-389.
Examples
x <- seq(0, 1, length.out = 21)
pobug(x)
pobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
dobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(dobug, -3, 3)
qobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
n <- 10
robug(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
hobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(hobug, -3, 3)