GOLLG {ollg} | R Documentation |
Generalized Odd log-logistic family of distributions (GOLL-G)
Description
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2017) specified by the pdf
f=\frac{\alpha\beta\,g\,G^{\alpha\beta-1}[1-G^\alpha]^{\beta-1}}{[G^{\alpha\beta}+[1-G^\alpha]^\beta]^2}
for G
any valid continuous cdf , \bar{G}=1-G
, g
the corresponding pdf, \alpha > 0
, the first shape parameter, and \beta > 0
, the second shape parameter.
Usage
pgollg(x, alpha = 1, beta = 1, G = pnorm, ...)
dgollg(x, alpha = 1, beta = 1, G = pnorm, ...)
qgollg(q, alpha = 1, beta = 1, G = pnorm, ...)
rgollg(n, alpha = 1, beta = 1, G = pnorm, ...)
hgollg(x, alpha = 1, beta = 1, G = pnorm, ...)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
Value
pgollg
gives the distribution function,
dgollg
gives the density,
qgollg
gives the quantile function,
hgollg
gives the hazard function and
rgollg
generates random variables from the Generalized Odd log-logistic family of
distributions (GOLL-G) for baseline cdf G.
References
Cordeiro, G.M., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E.M.M., Altun, E. (2017). The generalized odd log-logistic family of distributions : properties, regression models and applications. Journal of Statistical Computation and Simulation ,87(5),908-932.
Examples
x <- seq(0, 1, length.out = 21)
pgollg(x)
pgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
dgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(dgollg, -3, 3)
qgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
n <- 10
rgollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
hgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(hgollg, -3, 3)