BOLLG {ollg} | R Documentation |
The beta Odd log-logistic family of distributions (BOLL-G)
Description
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2016) specified by the pdf
f=\frac{\alpha\,g\,G^{a\,\alpha-1}\bar{G}^{b\,\alpha-1}}{B(a,b)[G^\alpha+\bar{G}^\alpha]^{a+b}}
for G
any valid continuous cdf , \bar{G}=1-G
, g
the corresponding pdf, B(a, b)
, the beta function, a, b > 0
, the shape parameter, \alpha > 0
, the first shape parameter.
Usage
pbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
dbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
qbollg(q, alpha = 1, a = 1, b = 1, G = pnorm, ...)
rbollg(n, alpha = 1, a = 1, b = 1, G = pnorm, ...)
hbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
a |
the value of the shape parameter, must be positive, the default is 1. |
b |
the value of the shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
Value
pbollg
gives the distribution function,
dbollg
gives the density,
qbollg
gives the quantile function,
hbollg
gives the hazard function and
rbollg
generates random variables from the The beta Odd log-logistic family of
distributions (BOLL-G) for baseline cdf G.
References
Cordeiro, G. M., Alizadeh, M., Tahir, M. H., Mansoor, M., Bourguignon, M., Hamedani, G. G. (2016). The beta odd log-logistic generalized family of distributions. Hacettepe Journal of Mathematics and Statistics, 45(4), 1175-1202.
Examples
x <- seq(0, 1, length.out = 21)
pbollg(x)
pbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2)
dbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(dbollg, -3, 3)
qbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2)
n <- 10
rbollg(n, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2)
hbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2)
curve(hbollg, -3, 3)