| shapiro_bootstrap.test {nortsTest} | R Documentation | 
The Sieve Bootstrap Shapiro test for normality.
Description
Performs the approximated Shapiro test for normality for univariate time series. Computes the p-value using Psaradakis and Vavra's (2020) sieve bootstrap procedure.
Usage
shapiro_bootstrap.test(y, reps = 1000, h = 100, seed = NULL)
Arguments
| y | a numeric vector or an object of the  | 
| reps | an integer with the total bootstrap repetitions. | 
| h | an integer with the first  | 
| seed | An optional  | 
Details
Employs the Shapiro test approximating the p-value using a sieve-bootstrap procedure, Psaradakis, Z. and Vávra, M. (2020).
Value
A list with class "h.test" containing the following components:
| statistic: | the sieve bootstrap Shapiro's statistic. | 
| p.value: | the p value for the test. | 
| alternative: | a character string describing the alternative hypothesis. | 
| method: | a character string “Sieve-Bootstrap Shapiro's test”. | 
| data.name: | a character string giving the name of the data. | 
Author(s)
Asael Alonzo Matamoros.
References
Psaradakis, Z. and Vávra, M. (2020) Normality tests for dependent data: large-sample and bootstrap approaches. Communications in Statistics-Simulation and Computation 49 (2). ISSN 0361-0918.
Bulmann, P. (1997). Sieve Bootstrap for time series. Bernoulli. 3(2), 123 -148.
Patrick Royston (1982). An extension of Shapiro and Wilk's W test for normality to large samples. Applied Statistics, 31, 115–124. Doi:10.2307/2347973.
See Also
Examples
# Generating an stationary arma process
y = arima.sim(100,model = list(ar = 0.3))
jb_bootstrap.test(y)