lobato_bootstrap.test {nortsTest} | R Documentation |
The Sieve Bootstrap Lobato and Velasco's Test for normality.
Description
Performs the approximated Lobato and Velasco's test of normality for univariate time series. Computes the p-value using Psaradakis and Vavra's (2020) sieve bootstrap procedure.
Usage
lobato_bootstrap.test(y, c = 1, reps = 1000, h = 100, seed = NULL)
Arguments
y |
a numeric vector or an object of the |
c |
a positive real value that identifies the total amount of values used in the cumulative sum. |
reps |
an integer with the total bootstrap repetitions. |
h |
an integer with the first |
seed |
An optional |
Details
This test proves a normality assumption in correlated data employing the skewness-kurtosis test statistic proposed by Lobato, I., & Velasco, C. (2004), approximating the p-value using a sieve-bootstrap procedure, Psaradakis, Z. and Vávra, M. (2020).
Value
A list with class "h.test"
containing the following components:
statistic: |
the sieve bootstrap Lobato n Velasco's statistic. |
p.value: |
the p value for the test. |
alternative: |
a character string describing the alternative hypothesis. |
method: |
a character string “Sieve-Bootstrap Lobato's test”. |
data.name: |
a character string giving the name of the data. |
Author(s)
Asael Alonzo Matamoros and Alicia Nieto-Reyes.
References
Psaradakis, Z. and Vávra, M. (2020) Normality tests for dependent data: large-sample and bootstrap approaches. Communications in Statistics-Simulation and Computation 49 (2). ISSN 0361-0918.
Nieto-Reyes, A., Cuesta-Albertos, J. & Gamboa, F. (2014). A random-projection based test of Gaussianity for stationary processes. Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 124-141.
Lobato, I., & Velasco, C. (2004). A simple test of normality in time series. Journal of econometric theory. 20(4), 671-689.
See Also
Examples
# Generating an stationary arma process
y = arima.sim(1000,model = list(ar = 0.3))
lobato_bootstrap.test(y, reps = 1000)