| epps_bootstrap.test {nortsTest} | R Documentation | 
The Sieve Bootstrap Epps and Pulley test for normality.
Description
Performs the approximated Epps and Pulley's test of normality for univariate time series. Computes the p-value using Psaradakis and Vavra's (2020) sieve bootstrap procedure.
Usage
epps_bootstrap.test(y, lambda = c(1,2), reps = 500, h = 100, seed = NULL)
Arguments
y | 
 a numeric vector or an object of the   | 
lambda | 
 a numeric vector for evaluating the characteristic function.  | 
reps | 
 an integer with the total bootstrap repetitions.  | 
h | 
 an integer with the first   | 
seed | 
 An optional   | 
Details
The Epps test minimize the process' empirical characteristic function using a quadratic loss in terms of the process two first moments, Epps, T.W. (1987). Approximates the p-value using a sieve-bootstrap procedure Psaradakis, Z. and Vávra, M. (2020).
Value
A list with class "h.test" containing the following components:
statistic: | 
 the sieve bootstrap Epps and Pulley's statistic.  | 
p.value: | 
 the p value for the test.  | 
alternative: | 
 a character string describing the alternative hypothesis.  | 
method: | 
 a character string “Sieve-Bootstrap Epps' test”.  | 
data.name: | 
 a character string giving the name of the data.  | 
Author(s)
Asael Alonzo Matamoros and Alicia Nieto-Reyes.
References
Psaradakis, Z. and Vávra, M. (2020) Normality tests for dependent data: large-sample and bootstrap approaches. Communications in Statistics-Simulation and Computation 49 (2). ISSN 0361-0918.
Nieto-Reyes, A., Cuesta-Albertos, J. & Gamboa, F. (2014). A random-projection based test of Gaussianity for stationary processes. Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 124-141.
Epps, T.W. (1987). Testing that a stationary time series is Gaussian. The Annals of Statistic. 15(4), 1683-1698.
See Also
Examples
# Generating an stationary arma process
y = arima.sim(300, model = list(ar = 0.3))
epps_bootstrap.test(y, reps = 1000)