elbouch.test {nortsTest} | R Documentation |
Computes El Bouch, et al.'s test for normality of multivariate dependent samples.
Description
Computes the El Bouch, Michel, & Comon's test for normality of a bivariate dependent samples.
Usage
elbouch.test(y, x = NULL)
Arguments
y |
a numeric vector or an object of the |
x |
a numeric vector or an object of the |
Details
This function computes El Bouch, et al. (2022) test for normality of bivariate dependent samples. If 'x' is set to 'NULL', the test computes the univariate counterpart. This test is a correction of Mardia's, (1970) multivariate skewness and kurtosis test for multivariate samples.
Value
A list with class "h.test"
containing the following components:
statistic: |
the El Bouch Z statistic. |
p.value: |
the p value for the test. |
alternative: |
a character string describing the alternative hypothesis. |
method: |
a character string “El Bouch, Michel & Comon's test”. |
data.name: |
a character string giving the name of the data. |
Author(s)
Asael Alonzo Matamoros.
References
El Bouch, S., Michel, O. & Comon, P. (2022). A normality test for Multivariate dependent samples. Journal of Signal Processing. Volume 201.
Mardia, K. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57 519-530
Lobato, I., & Velasco, C. (2004). A simple test of normality in time series. Journal of econometric theory. 20(4), 671-689.
See Also
Examples
# Generate an univariate stationary arma process
y = arima.sim(100,model = list(ar = 0.3))
elbouch.test(y)
# Generate a bivariate Gaussian random vector
x = rnorm(200)
y = rnorm(200)
elbouch.test(y = y, x = x)