| cvm_bootstrap.test {nortsTest} | R Documentation | 
The Sieve Bootstrap Cramer Von Mises test for normality.
Description
Performs the approximated Cramer Von Mises test of normality for univariate time series. Computes the p-value using Psaradakis and Vavra's (2020) sieve bootstrap procedure.
Usage
cvm_bootstrap.test(y, reps = 1000, h = 100, seed = NULL)
Arguments
y | 
 a numeric vector or an object of the   | 
reps | 
 an integer with the total bootstrap repetitions.  | 
h | 
 an integer with the first   | 
seed | 
 An optional   | 
Details
Employs Cramer Von Mises test approximating the p-value using a sieve-bootstrap procedure, Psaradakis, Z. and Vávra, M. (2020).
Value
A list with class "h.test" containing the following components:
statistic: | 
 the sieve bootstrap Cramer Von Mises' statistic.  | 
p.value: | 
 the p value for the test.  | 
alternative: | 
 a character string describing the alternative hypothesis.  | 
method: | 
 a character string “Sieve-Bootstrap Cramer Von Mises' test”.  | 
data.name: | 
 a character string giving the name of the data.  | 
Author(s)
Asael Alonzo Matamoros.
References
Psaradakis, Z. and Vávra, M. (2020) Normality tests for dependent data: large-sample and bootstrap approaches. Communications in Statistics-Simulation and Computation 49 (2). ISSN 0361-0918.
Bulmann, P. (1997). Sieve Bootstrap for time series. Bernoulli. 3(2), 123 -148.
Stephens, M.A. (1986): Tests based on EDF statistics. In: D'Agostino, R.B. and Stephens, M.A., eds.: Goodness-of-Fit Techniques. Marcel Dekker, New York.
See Also
Examples
# Generating an stationary arma process
y = arima.sim(100,model = list(ar = 0.3))
cvm_bootstrap.test(y)