funs.varNii {nnspat} | R Documentation |
Variances of the Self Entries in a Species Correspondence Contingency Table (SCCT)
Description
Two functions: varNii.ct
and varNii
.
Both functions return a vector
of length k
of variances of the self entries (i.e., first column) in a
species correspondence contingency table (SCCT) or the variances of the diagonal entries N_{ii}
in an NNCT,
but have different arguments (see the parameter list below).
These variances are valid under RL or conditional on Q
and R
under CSR.
The argument ct
which is used in varNii.ct
only, can be either the NNCT or SCCT.
See also (Ceyhan (2018)).
Usage
varNii.ct(ct, Q, R)
varNii(dat, lab, ...)
Arguments
ct |
The NNCT or SCCT, used in |
Q |
The number of shared NNs, used in |
R |
The number of reflexive NNs (i.e., twice the number of reflexive NN pairs), used in |
dat |
The data set in one or higher dimensions, each row corresponds to a data point,
used in |
lab |
The |
... |
are for further arguments, such as |
Value
A vector
of length k
whose entries are the variances of the self entries (i.e., first column) in a
species correspondence contingency table (SCCT) or of the diagonal entries in an NNCT.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2018). “A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence.” SORT-Statistics and Operations Research Transactions, 42(2), 125-158.
See Also
scct
, var.nnct
, var.tct
, var.nnsym
and covNii
Examples
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varNii(Y,cls)
varNii.ct(ct,Qv,Rv)
varNii(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
varNii(Y,fcls)
varNii.ct(ct,Qv,Rv)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varNii(Y,cls)
varNii.ct(ct,Qv,Rv)