| cov.nnsym {nnspat} | R Documentation |
Covariance Matrix of the Differences of the Off-Diagonal Cell Counts in an NNCT
Description
Returns the covariance matrix of the differences of the cell counts, N_{ij}-N_{ji}
for i,j=1,\ldots,k and i \ne j, in the NNCT, ct.
The covariance matrix is of dimension k(k-1)/2 \times k(k-1)/2 and its entries are
cov(N_{ij}-N_{ji}, N_{kl}-N_{lk}) where the order of i,j for N_{ij}-N_{ji} is as
in the output of ind.nnsym(k).
These covariances are valid under RL or conditional on Q and R under CSR.
The argument covN is the covariance matrix of N_{ij} (concatenated rowwise).
See also (Dixon (1994); Ceyhan (2014)).
Usage
cov.nnsym(covN)
Arguments
covN |
The |
Value
The k(k-1)/2 \times k(k-1)/2 covariance matrix of the differences of the off-diagonal cell counts N_{ij}-N_{ji}
for i,j=1,\ldots,k and i \ne j in the NNCT, ct
Author(s)
Elvan Ceyhan
References
Ceyhan E (2014).
“Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations.”
The Scientific World Journal, Volume 2014, Article ID 698296.
Dixon PM (1994).
“Testing spatial segregation using a nearest-neighbor contingency table.”
Ecology, 75(7), 1940-1948.
See Also
var.nnsym, cov.tct, cov.nnct and cov.seg.coeff
Examples
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
cov.nnsym(covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.nnsym(covN)