cov.nnct {nnspat} | R Documentation |
Covariance Matrix of the Cell Counts in an NNCT
Description
Returns the covariance matrix of
cell counts N_{ij}
for i,j=1,\ldots,k
in the NNCT, ct
.
The covariance matrix is of dimension k^2 \times k^2
and its entries are cov(N_{ij},N_{kl})
when N_{ij}
values are
by default corresponding to the row-wise vectorization of ct
.
If byrow=FALSE
, the column-wise
vectorization of ct
is used.
These covariances are valid under RL
or conditional on Q
and R
under CSR.
See also (Dixon (1994, 2002); Ceyhan (2010, 2017)).
Usage
cov.nnct(ct, varN, Q, R, byrow = TRUE)
Arguments
ct |
A nearest neighbor contingency table |
varN |
The |
Q |
The number of shared NNs |
R |
The number of reflexive NNs (i.e., twice the number of reflexive NN pairs) |
byrow |
A logical argument (default= |
Value
The k^2 \times k^2
covariance matrix of
cell counts N_{ij}
for i,j=1,\ldots,k
in the NNCT, ct
Author(s)
Elvan Ceyhan
References
Ceyhan E (2010).
“On the use of nearest neighbor contingency tables for testing spatial segregation.”
Environmental and Ecological Statistics, 17(3), 247-282.
Ceyhan E (2017).
“Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables.”
Journal of the Korean Statistical Society, 46(2), 219-245.
Dixon PM (1994).
“Testing spatial segregation using a nearest-neighbor contingency table.”
Ecology, 75(7), 1940-1948.
Dixon PM (2002).
“Nearest-neighbor contingency table analysis of spatial segregation for several species.”
Ecoscience, 9(2), 142-151.
See Also
covNrow2col
, cov.tct
,
and cov.nnsym
Examples
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv,byrow=FALSE)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv,byrow=FALSE)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)